ترغب بنشر مسار تعليمي؟ اضغط هنا

The cloverleaf antenna: A compact wide-bandwidth dual-polarization feed for CHIME

583   0   0.0 ( 0 )
 نشر من قبل Meiling Deng
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have developed a compact, wide-bandwidth, dual-polarization cloverleaf-shaped antenna to feed the CHIME radio telescope. The antenna has been tuned using CST to have smaller than -10dB s11 for over an octave of bandwidth, covering the full CHIME band from 400MHz to 800MHz and this performance has been confirmed by measurement. The antennas are made of conventional low loss circuit boards and can be mass produced economically, which is important because CHIME requires 1280 feeds. They are compact enough to be placed 30cm apart in a linear array at any azimuthal rotation.



قيم البحث

اقرأ أيضاً

A novel and compact dual band dual sense circularly polarized microstrip patch antenna with single coaxial feed has been reported in the present work. The key idea of generating dual band circular polarisation (CP) is the integration of a square patc h with corner truncation and a smaller concentric circular patch with double slits. The first resonance is provided by the larger patch whose corner truncation generates two orthogonal modes. The inner patch controls the higher-order resonance with the CP contributed by two narrow slits. The higher order resonating frequency can be monitored by controlling the dimensions of the circle and the slits. The antenna provides the CP in two orthogonal planes with two different sense of polarisation. The lower order CP is of left-handed orientation, whereas the higher order shows right-handed polarization. The cross-polarization level is also found to be very low.
Polarimetric observations of Fast Radio Bursts (FRBs) are a powerful resource for better understanding these mysterious sources by directly probing the emission mechanism of the source and the magneto-ionic properties of its environment. We present a pipeline for analysing the polarized signal of FRBs captured by the triggered baseband recording system operating on the FRB survey of The Canadian Hydrogen Intensity Mapping Experiment (CHIME/FRB). Using a combination of simulated and real FRB events, we summarize the main features of the pipeline and highlight the dominant systematics affecting the polarized signal. We compare parametric (QU-fitting) and non-parametric (rotation measure synthesis) methods for determining the Faraday rotation measure (RM) and find the latter method susceptible to systematic errors from known instrumental effects of CHIME/FRB observations. These errors include a leakage artefact that appears as polarized signal near $rm{RMsim 0 ; rad , m^{-2}}$ and an RM sign ambiguity introduced by path length differences in the systems electronics. We apply the pipeline to a bright burst previously reported by citet[FRB 20191219F;][]{Leung2021}, detecting an $mathrm{RM}$ of $rm{+6.074 pm 0.006 pm 0.050 ; rad , m^{-2}}$ with a significant linear polarized fraction ($gtrsim0.87$) and strong evidence for a non-negligible circularly polarized component. Finally, we introduce an RM search method that employs a phase-coherent de-rotation algorithm to correct for intra-channel depolarization in data that retain electric field phase information, and successfully apply it to an unpublished FRB, FRB 20200917A, measuring an $mathrm{RM}$ of $rm{-1294.47 pm 0.10 pm 0.05 ; rad , m^{-2}}$ (the second largest unambiguous RM detection from any FRB source observed to date).
One of the main considerations in the ALMA Development Roadmap for the future of operations beyond 2030 is to at least double its on-sky instantaneous bandwidth capabilities. Thanks to the technological innovations of the past two decades, we can now produce wider bandwidth receivers than were foreseen at the time of the original ALMA specifications. In several cases, the band edges set by technology at that time are also no longer relevant. In this memo, we look into the scientific advantages of beginning with Band 2 when implementing such wideband technologies. The Band 2 receiver system will be the last of the original ALMA bands, completing ALMAs coverage of the atmospheric windows from 35-950 GHz, and is not yet covered by any other ALMA receiver. New receiver designs covering and significantly extending the original ALMA Band 2 frequency range (67-90 GHz) can now implement these technologies. We explore the scientific and operational advantages of a receiver covering the full 67-116 GHz atmospheric window. In addition to technological goals, the ALMA Development Roadmap provides 3 new key science drivers for ALMA, to probe: 1) the Origins of Galaxies, 2) the Origins of Chemical Complexity, and 3) the Origins of Planets. In this memo, we describe how the wide RF Band 2 system can help achieve these goals, enabling several high-profile science programmes to be executed uniquely or more effectively than with separate systems, requiring an overall much lower array time and achieving more consistent calibration accuracy: contiguous broad-band spectral surveys, measurements of deuterated line ratios, and more generally fractionation studies, improved continuum measurements (also necessary for reliable line flux measurements), simultaneous broad-band observations of transient phenomena, and improved bandwidth for 3 mm very long baseline interferometry (VLBI).
The critical component of radio astronomy radiometers built to detect redshifted 21-cm signals from Cosmic Dawn is the antenna element. We describe the design and performance of an octave bandwidth cone disc antenna built to detect this signal in the band 40 to 90 MHz. The Cosmic Dawn signal is predicted to be a wideband spectral feature orders of magnitude weaker than sky and ground radio brightness. Thus, the engineering challenge is to design an antenna at low frequencies that is able to provide with high fidelity the faint cosmological signal, along with foreground sky, to the receiver. The antenna characteristics must not compromise detection by imprinting any confusing spectral features on the celestial radiation, ground emission or receiver noise. An innovation in the present design is making the antenna electrically smaller than half wavelength and operating it on the surface of a sufficiently large water body. The homogeneous and high permittivity medium beneath the small cone-disc antenna results in an achromatic beam pattern, high radiation efficiency and minimum unwanted confusing spectral features. The antenna design was optimized in WIPL-D and FEKO. A prototype was constructed and deployed on a lake to validate its performance with field measurements. Index Terms: Antenna measurements, radio astronomy, reflector antennas.
A novel and compact dual band planar antenna for 2.4/5.2/5.8-GHz wireless local area network(WLAN) applications is proposed and studied in this paper. The antenna comprises of a T-shaped and a F-shaped element to generate two resonant modes for dual band operation. The two elements can independently control the operating frequencies of the two excited resonant modes. The T-element which is fed directly by a 50 $Omega$ microstrip line generates a frequency band at around 5.2 GHz and the antenna parameters can be adjusted to generate a frequency band at 5.8 GHz as well, thus covering the two higher bands of WLAN systems individually. By couple-feeding the F-element through the T-element, a frequency band can be generated at 2.4 GHz to cover the lower band of WLAN system. Hence, the two elements together are very compact with a total area of only 11$times$6.5 mm$^{2}$. A thorough parametric study of key dimensions in the design has been performed and the results obtained have been used to present a generalized design approach. Plots of the return loss and radiation pattern have been given and discussed in detail to show that the design is a very promising candidate for WLAN applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا