ترغب بنشر مسار تعليمي؟ اضغط هنا

Polymer coated cerium oxide nanoparticles as oxidoreductase-like catalysts

112   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Berret
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, harmful molecules produced in oxidative stress asso-ciated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer coated cerium oxide nanoparticles are prepared by associa-tion of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG) grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase- and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not af-fect the superoxide dismutase-like, impair the catalase-like and oxidase-like and surprisingly im-proves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid) coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphon-ic acids as anchoring groups at the particle surface.

قيم البحث

اقرأ أيضاً

Battery-like supercapacitors feature high power and energy densities as well as long-term capacitance retention. The utilized capacitor electrodes are thus better to have large surface areas, high conductivity, high stability, and importantly be of b inder free. Herein, vertically aligned carbon nanofibers (CNFs) coated boron-doped diamonds (BDD) are employed as the capacitor electrodes to construct battery-like supercapacitors. Grown via a thermal chemical vapor deposition technique, these CNFs/BDD hybrid films are binder free and own porous structures, resulting in large surface areas. Meanwhile, the containment of graphene layers and copper metal catalysts inside CNFs/BDD leads to their high conductivity. Electric double layer capacitors (EDLCs) and pseudocapacitors (PCs) are then constructed in the inert electrolyte (1.0 M H2SO4 solution) and in the redox-active electrolyte (1.0 M Na2SO4 + 0.05 M Fe(CN)63-/4-), respectively. For assembled two-electrode symmetrical supercapacitor devices, the capacitances of EDLC and PC devices reach 30 and 48 mF cm-2 at 10 mV s-1, respectively. They remain constant even after 10 000 cycles. The power densities are 27.3 kW kg-1 and 25.3 kW kg-1 for EDLC and PC devices, together with their energy densities of 22.9 Wh kg-1 and 44.1 Wh kg-1, respectively. The performance of formed EDLC and PC devices is comparable to market-available batteries. Therefore, the vertically aligned CNFs/BDD hybrid film is a suitable capacitor electrode material to construct high-performance battery-like and industry-orientated supercapacitors for flexible power devices.
A simple method has been used to synthesize nanostructured La0.5Ba0.5CoO3 (LBCO) powders, by confining chemical precursors into the pores of polycarbonate filters. The proposed method allows us to obtain powders formed by crystallites of different si zes, it is scalable and does not involve the use of sophisticated deposition techniques. The area specific polarization resistance of symmetrical cells was studied to analyze the electrochemical behavior of the LBCO nanostructures as cathodes for Solid-Oxide Fuel Cells. We show that the performance is improved by reducing the size of the crystallites, obtaining area specific resistance values of 0.2 Wcm2 at 700C, comparable with newly developed cathodes using novel deposition techniques.
Research on cerium oxide nanoparticles (nanoceria) has captivated the scientific community due to their unique physical and chemical properties, such as redox activity and oxygen buffering capacity, which made them available for many technical applic ations, including biomedical applications. The redox mimetic antioxidant properties of nanoceria have been effective in the treatment of many diseases caused by reactive oxygen species (ROS) and reactive nitrogen species. The mechanism of ROS scavenging activity of nanoceria is still elusive, and its redox activity is controversial due to mixed reports in the literature showing pro-oxidant and antioxidant activity. In lieu of its current research interest, it is critical to understand the behaviour of nanoceria in the biological environment and provide answers to some of the critical and open issues. This review critically analyses the status of research on the application of nanoceria to treat diseases caused by ROS. It reviews the proposed mechanism of action and shows the effect of surface coatings on its redox activity. It also discusses some of the crucial issues in deciphering the mechanism and redox activity of nanoceria and suggests areas of future research.
Magnetic nanoparticles (NP) of magnetite (Fe3O4) coated with oleic acid (OA) and dodecanoic acid (DA) were synthesized and investigated through Transmission Electron Microscopy (TEM),magnetization M, and ac magnetic susceptibility measurements. The O A coated samples were produced with different magnetic concentrations (78, 76, and 65%) and the DA sample with 63% of Fe3O4. Images from TEM indicate that the NP have a nearly spherical geometry and mean diameter ~ 5.5 nm. Magnetization measurements, performed in zero field cooled (ZFC) and field cooled (FC) processes under different external magnetic fields H, exhibited a maximum at a given temperature TB in the ZFC curves, which depends on the NP coating (OA or DA), magnetite concentration, and H. The temperature TB decreases monotonically with increasing H and, for a given H, the increase in the magnetite concentration results in an increase of TB. The observed behavior is related to the dipolar interaction (DI) between NP which seems to be an important mechanism in all samples studied. This is supported by the results of the ac magnetic susceptibility Xac measurements, where the temperature in which X peaks for different frequencies follows the Vogel-Fulcher model, a feature commonly found in systems with dipolar interactions. Curves of H vs. TB/TB(H=0) for samples with different coatings and magnetite concentrations collapse into a universal curve, indicating that the qualitative magnetic behavior of the samples may be described by the NP themselves, instead of the coating or the strength of the dipolar interaction. Below TB, M vs. H curves show a coercive field (HC) that increases monotonically with decreasing temperature. The saturation magnetization (MS) follows the Blochs law and values of MS at room temperature as high as 78 emu/g were estimated, a result corresponding to ~80% of the bulk value. The overlap of M/MS vs. H/T curves for a given sample and the low HC at high temperatures suggest superparamagnetic behavior in all samples studied. The overlap of M/MS vs. H curves at constant temperature for different samples indicates that the NP magnetization behavior is preserved, independently of the coating and magnetite concentration.
We propose a new approach to understand the time-dependent temperature increasing process of gold-silica core-shell nanoparticles injected into chicken tissues under near-infrared laser irradiation. Gold nanoshells strongly absorb near-infrared radia tions and efficiently transform absorbed energy into heat. Temperature rise given by experiments and numerical calculations based on bioheat transfer are in good agreement. Our work improves the analysis of a recent study [Richardson et al., Nano Lett. 9, 1139 (2009)] by including effects of the medium perfusion on temperature increase. The theoretical analysis can also be used to estimate the distribution of nanoparticles in experimental samples and provide a relative accuracy prediction for the temperature profile of new systems. This methodology would provide a novel and reliable tool for speeding up photothermal investigations and designing state-of-the-art photothermal devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا