ﻻ يوجد ملخص باللغة العربية
We present a reformulation of the reactive rod model (RRM) of Dutta and Graham [Dutta, Sarit and Graham, Michael D., JNNFM 251 (2018)], a constitutive model for describing the behavior of dilute wormlike micelle solutions. The RRM treats wormlike micelle solutions as dilute suspensions of rigid Brownian rods undergoing reversible scission and growth in flow. Evolution equations for micelle orientation and stress contribution are coupled to a kinetic reaction equation for a collective micelle length, producing dynamic variations in the length and rotational diffusivity of the rods. This model has previously shown success in capturing many critical steady-state rheological features of dilute wormlike micelle solutions, particularly shear-thickening and -thinning, non-zero normal stress differences, and a reentrant shear stress-shear rate curve, and could fit a variety of steady state experimental data. The present work improves on this framework, which showed difficulty in capturing transient dynamics and high-shear behavior, by reformulating the kinetic equation for micelle growth on a more microstructural (though still highly idealized) basis. In particular, we allow for micelle growth associated with strong alignment of rods and breakage due to tensile stresses along the micelles. This new formulation captures both steady and transient shear rheology in good agreement with experiments. We also find good agreement with available steady state extensional rheology.
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD
The effect of a spatially uniform magnetic field on the shear rheology of a dilute emulsion of monodispersed ferrofluid droplets, immersed in a non-magnetizable immiscible fluid, is investigated using direct numerical simulations. The direction of th
The structure and dynamics of confined suspensions of particles of arbitrary shape is of interest in multiple disciplines, from biology to engineering. Theoretical studies are often limited by the complexity of long-range particle-particle and partic
Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volu
Colloidal particles with strong, short-ranged attractions can form a gel. We simulate this process without and with hydrodynamic interactions (HI), using the lattice-Boltzmann method to account for presence of a thermalized solvent. We show that HI s