ترغب بنشر مسار تعليمي؟ اضغط هنا

Hypothesis-driven Stream Learning with Augmented Memory

82   0   0.0 ( 0 )
 نشر من قبل Mengmi Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Stream learning refers to the ability to acquire and transfer knowledge across a continuous stream of data without forgetting and without repeated passes over the data. A common way to avoid catastrophic forgetting is to intersperse new examples with replays of old examples stored as image pixels or reproduced by generative models. Here, we considered stream learning in image classification tasks and proposed a novel hypotheses-driven Augmented Memory Network, which efficiently consolidates previous knowledge with a limited number of hypotheses in the augmented memory and replays relevant hypotheses to avoid catastrophic forgetting. The advantages of hypothesis-driven replay over image pixel replay and generative replay are two-fold. First, hypothesis-based knowledge consolidation avoids redundant information in the image pixel space and makes memory usage more efficient. Second, hypotheses in the augmented memory can be re-used for learning new tasks, improving generalization and transfer learning ability. We evaluated our method on three stream learning object recognition datasets. Our method performs comparably well or better than SOTA methods, while offering more efficient memory usage. All source code and data are publicly available https://github.com/kreimanlab/AugMem.



قيم البحث

اقرأ أيضاً

In this work, we present a memory-augmented approach for image-goal navigation. Earlier attempts, including RL-based and SLAM-based approaches have either shown poor generalization performance, or are heavily-reliant on pose/depth sensors. Our method uses an attention-based end-to-end model that leverages an episodic memory to learn to navigate. First, we train a state-embedding network in a self-supervised fashion, and then use it to embed previously-visited states into the agents memory. Our navigation policy takes advantage of this information through an attention mechanism. We validate our approach with extensive evaluations, and show that our model establishes a new state of the art on the challenging Gibson dataset. Furthermore, we achieve this impressive performance from RGB input alone, without access to additional information such as position or depth, in stark contrast to related work.
Popular approaches for minimizing loss in data-driven learning often involve an abstraction or an explicit retention of the history of gradients for efficient parameter updates. The aggregated history of gradients nudges the parameter updates in the right direction even when the gradients at any given step are not informative. Although the history of gradients summarized in meta-parameters or explicitly stored in memory has been shown effective in theory and practice, the question of whether $all$ or only a subset of the gradients in the history are sufficient in deciding the parameter updates remains unanswered. In this paper, we propose a framework of memory-augmented gradient descent optimizers that retain a limited view of their gradient history in their internal memory. Such optimizers scale well to large real-life datasets, and our experiments show that the memory augmented extensions of standard optimizers enjoy accelerated convergence and improved performance on a majority of computer vision and language tasks that we considered. Additionally, we prove that the proposed class of optimizers with fixed-size memory converge under assumptions of strong convexity, regardless of which gradients are selected or how they are linearly combined to form the update step.
Despite recent advancements in deep learning-based automatic colorization, they are still limited when it comes to few-shot learning. Existing models require a significant amount of training data. To tackle this issue, we present a novel memory-augme nted colorization model MemoPainter that can produce high-quality colorization with limited data. In particular, our model is able to capture rare instances and successfully colorize them. We also propose a novel threshold triplet loss that enables unsupervised training of memory networks without the need of class labels. Experiments show that our model has superior quality in both few-shot and one-shot colorization tasks.
80 - Rui Xu , Minghao Guo , Jiaqi Wang 2020
Patch-based methods and deep networks have been employed to tackle image inpainting problem, with their own strengths and weaknesses. Patch-based methods are capable of restoring a missing region with high-quality texture through searching nearest ne ighbor patches from the unmasked regions. However, these methods bring problematic contents when recovering large missing regions. Deep networks, on the other hand, show promising results in completing large regions. Nonetheless, the results often lack faithful and sharp details that resemble the surrounding area. By bringing together the best of both paradigms, we propose a new deep inpainting framework where texture generation is guided by a texture memory of patch samples extracted from unmasked regions. The framework has a novel design that allows texture memory retrieval to be trained end-to-end with the deep inpainting network. In addition, we introduce a patch distribution loss to encourage high-quality patch synthesis. The proposed method shows superior performance both qualitatively and quantitatively on three challenging image benchmarks, i.e., Places, CelebA-HQ, and Paris Street-View datasets.
Most recent few-shot learning (FSL) methods are based on meta-learning with episodic training. In each meta-training episode, a discriminative feature embedding and/or classifier are first constructed from a support set in an inner loop, and then eva luated in an outer loop using a query set for model updating. This query set sample centered learning objective is however intrinsically limited in addressing the lack of training data problem in the support set. In this paper, a novel contrastive prototype learning with augmented embeddings (CPLAE) model is proposed to overcome this limitation. First, data augmentations are introduced to both the support and query sets with each sample now being represented as an augmented embedding (AE) composed of concatenated embeddings of both the original and augment

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا