ﻻ يوجد ملخص باللغة العربية
In this paper, we propose to make a systematic study on machines multisensory perception under attacks. We use the audio-visual event recognition task against multimodal adversarial attacks as a proxy to investigate the robustness of audio-visual learning. We attack audio, visual, and both modalities to explore whether audio-visual integration still strengthens perception and how different fusion mechanisms affect the robustness of audio-visual models. For interpreting the multimodal interactions under attacks, we learn a weakly-supervised sound source visual localization model to localize sounding regions in videos. To mitigate multimodal attacks, we propose an audio-visual defense approach based on an audio-visual dissimilarity constraint and external feature memory banks. Extensive experiments demonstrate that audio-visual models are susceptible to multimodal adversarial attacks; audio-visual integration could decrease the model robustness rather than strengthen under multimodal attacks; even a weakly-supervised sound source visual localization model can be successfully fooled; our defense method can improve the invulnerability of audio-visual networks without significantly sacrificing clean model performance.
Adversarial audio attacks can be considered as a small perturbation unperceptive to human ears that is intentionally added to the audio signal and causes a machine learning model to make mistakes. This poses a security concern about the safety of mac
While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons i
Audio-visual event localization aims to localize an event that is both audible and visible in the wild, which is a widespread audio-visual scene analysis task for unconstrained videos. To address this task, we propose a Multimodal Parallel Network (M
Moving around in the world is naturally a multisensory experience, but todays embodied agents are deaf---restricted to solely their visual perception of the environment. We introduce audio-visual navigation for complex, acoustically and visually real
Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. In order to learn discriminative features for a classifi