ترغب بنشر مسار تعليمي؟ اضغط هنا

Positive Sample Propagation along the Audio-Visual Event Line

145   0   0.0 ( 0 )
 نشر من قبل Jinxing Zhou
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Visual and audio signals often coexist in natural environments, forming audio-visual events (AVEs). Given a video, we aim to localize video segments containing an AVE and identify its category. In order to learn discriminative features for a classifier, it is pivotal to identify the helpful (or positive) audio-visual segment pairs while filtering out the irrelevant ones, regardless whether they are synchronized or not. To this end, we propose a new positive sample propagation (PSP) module to discover and exploit the closely related audio-visual pairs by evaluating the relationship within every possible pair. It can be done by constructing an all-pair similarity map between each audio and visual segment, and only aggregating the features from the pairs with high similarity scores. To encourage the network to extract high correlated features for positive samples, a new audio-visual pair similarity loss is proposed. We also propose a new weighting branch to better exploit the temporal correlations in weakly supervised setting. We perform extensive experiments on the public AVE dataset and achieve new state-of-the-art accuracy in both fully and weakly supervised settings, thus verifying the effectiveness of our method.



قيم البحث

اقرأ أيضاً

381 - Yapeng Tian , Dingzeyu Li , 2020
In this paper, we introduce a new problem, named audio-visual video parsing, which aims to parse a video into temporal event segments and label them as either audible, visible, or both. Such a problem is essential for a complete understanding of the scene depicted inside a video. To facilitate exploration, we collect a Look, Listen, and Parse (LLP) dataset to investigate audio-visual video parsing in a weakly-supervised manner. This task can be naturally formulated as a Multimodal Multiple Instance Learning (MMIL) problem. Concretely, we propose a novel hybrid attention network to explore unimodal and cross-modal temporal contexts simultaneously. We develop an attentive MMIL pooling method to adaptively explore useful audio and visual content from different temporal extent and modalities. Furthermore, we discover and mitigate modality bias and noisy label issues with an individual-guided learning mechanism and label smoothing technique, respectively. Experimental results show that the challenging audio-visual video parsing can be achieved even with only video-level weak labels. Our proposed framework can effectively leverage unimodal and cross-modal temporal contexts and alleviate modality bias and noisy labels problems.
Active speaker detection is an important component in video analysis algorithms for applications such as speaker diarization, video re-targeting for meetings, speech enhancement, and human-robot interaction. The absence of a large, carefully labeled audio-visual dataset for this task has constrained algorithm evaluations with respect to data diversity, environments, and accuracy. This has made comparisons and improvements difficult. In this paper, we present the AVA Active Speaker detection dataset (AVA-ActiveSpeaker) that will be released publicly to facilitate algorithm development and enable comparisons. The dataset contains temporally labeled face tracks in video, where each face instance is labeled as speaking or not, and whether the speech is audible. This dataset contains about 3.65 million human labeled frames or about 38.5 hours of face tracks, and the corresponding audio. We also present a new audio-visual approach for active speaker detection, and analyze its performance, demonstrating both its strength and the contributions of the dataset.
While significant advancements have been made in the generation of deepfakes using deep learning technologies, its misuse is a well-known issue now. Deepfakes can cause severe security and privacy issues as they can be used to impersonate a persons i dentity in a video by replacing his/her face with another persons face. Recently, a new problem of generating synthesized human voice of a person is emerging, where AI-based deep learning models can synthesize any persons voice requiring just a few seconds of audio. With the emerging threat of impersonation attacks using deepfake audios and videos, a new generation of deepfake detectors is needed to focus on both video and audio collectively. A large amount of good quality datasets is typically required to capture the real-world scenarios to develop a competent deepfake detector. Existing deepfake datasets either contain deepfake videos or audios, which are racially biased as well. Hence, there is a crucial need for creating a good video as well as an audio deepfake dataset, which can be used to detect audio and video deepfake simultaneously. To fill this gap, we propose a novel Audio-Video Deepfake dataset (FakeAVCeleb) that contains not only deepfake videos but also respective synthesized lip-synced fake audios. We generate this dataset using the current most popular deepfake generation methods. We selected real YouTube videos of celebrities with four racial backgrounds (Caucasian, Black, East Asian, and South Asian) to develop a more realistic multimodal dataset that addresses racial bias and further help develop multimodal deepfake detectors. We performed several experiments using state-of-the-art detection methods to evaluate our deepfake dataset and demonstrate the challenges and usefulness of our multimodal Audio-Video deepfake dataset.
146 - Su Zhang , Yi Ding , Ziquan Wei 2021
We propose an audio-visual spatial-temporal deep neural network with: (1) a visual block containing a pretrained 2D-CNN followed by a temporal convolutional network (TCN); (2) an aural block containing several parallel TCNs; and (3) a leader-follower attentive fusion block combining the audio-visual information. The TCN with large history coverage enables our model to exploit spatial-temporal information within a much larger window length (i.e., 300) than that from the baseline and state-of-the-art methods (i.e., 36 or 48). The fusion block emphasizes the visual modality while exploits the noisy aural modality using the inter-modality attention mechanism. To make full use of the data and alleviate over-fitting, cross-validation is carried out on the training and validation set. The concordance correlation coefficient (CCC) centering is used to merge the results from each fold. On the test (validation) set of the Aff-Wild2 database, the achieved CCC is 0.463 (0.469) for valence and 0.492 (0.649) for arousal, which significantly outperforms the baseline method with the corresponding CCC of 0.200 (0.210) and 0.190 (0.230) for valence and arousal, respectively. The code is available at https://github.com/sucv/ABAW2.
We study the problem of localizing audio-visual events that are both audible and visible in a video. Existing works focus on encoding and aligning audio and visual features at the segment level while neglecting informative correlation between segment s of the two modalities and between multi-scale event proposals. We propose a novel MultiModulation Network (M2N) to learn the above correlation and leverage it as semantic guidance to modulate the related auditory, visual, and fused features. In particular, during feature encoding, we propose cross-modal normalization and intra-modal normalization. The former modulates the features of two modalities by establishing and exploiting the cross-modal relationship. The latter modulates the features of a single modality with the event-relevant semantic guidance of the same modality. In the fusion stage,we propose a multi-scale proposal modulating module and a multi-alignment segment modulating module to introduce multi-scale event proposals and enable dense matching between cross-modal segments. With the auditory, visual, and fused features modulated by the correlation information regarding audio-visual events, M2N performs accurate event localization. Extensive experiments conducted on the AVE dataset demonstrate that our proposed method outperforms the state of the art in both supervised event localization and cross-modality localization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا