ﻻ يوجد ملخص باللغة العربية
Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL). In the present work, we firstly propose an effective spin Hamiltonian consistents with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low temperature limit, several magnetic long range orders are observed, including the stripe, the zigzag, the antiferromagnetic (AFM), the ferromagnetic (FM), the incommensurate spiral (IS), the Multi-$pmb {Q}$ and the 120{deg}. We further calculate the thermodynamic properties of the system, such as the temperature dependence of the magnetic susceptibility and the heat capacity. The ordering transition temperatures reflected in the two quantities agree with each other. For most interaction regions, the system is magnetically more susceptible in the $ab$-plane than in the $c$-direction. The stripe phase is special, where the susceptibility is fairly isotropic in the whole temperature region. These features provide useful information to understand the magnetic properties of related materials.
Frustrated spin systems generically suffer from the negative sign problem inherent to Monte Carlo methods. Since the severity of this problem is formulation dependent, optimization strategies can be put forward. We introduce a phase pinning approach
The bifurcation method is a way to do rare event sampling -- to estimate the probability of events that are too rare to be found by direct simulation. We describe the bifurcation method and use it to estimate the transition rate of a double well pote
We study interacting Majorana fermions in two dimensions as a low-energy effective model of a vortex lattice in two-dimensional time-reversal-invariant topological superconductors. For that purpose, we implement ab-initio quantum Monte Carlo simulati
Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for t
In transition-metal compounds with partially filled $4d$ and $5d$ shells spin-orbit entanglement, electronic correlations, and crystal-field effects conspire to give rise to a variety of novel forms of topological quantum matter. This includes Kitaev