ﻻ يوجد ملخص باللغة العربية
In transition-metal compounds with partially filled $4d$ and $5d$ shells spin-orbit entanglement, electronic correlations, and crystal-field effects conspire to give rise to a variety of novel forms of topological quantum matter. This includes Kitaev materials -- a family of spin-orbit assisted Mott insulators, in which local, spin-orbit entangled $j=1/2$ moments form that are subject to strong bond-directional interactions. On a conceptual level, Kitaev materials attract much interest for their unconventional forms of magnetism, such as spin liquid physics in two- and three-dimensional lattice geometries or the formation of non-trivial spin textures. Experimentally, a number of Kitaev materials have been synthesized, which includes the honeycomb materials Na$_2$IrO$_3$, $alpha$-Li$_2$IrO$_3$, and RuCl$_3$, the triangular materials Ba$_3$Ir$_x$Ti$_{3-x}$O$_9$, as well as the three-dimensional hyper-honeycomb and stripy-honeycomb materials $beta$-Li$_2$IrO$_3$ and $gamma$-Li$_2$IrO$_3$. These lecture notes provide a short review of the current status of the theoretical and experimental exploration of these Kitaev materials.
Recent thermal-conductivity measurements evidence a magnetic-field-induced non-Abelian spin liquid phase in the Kitaev material $alpha$-$mathrm{RuCl}_{3}$. Although the platform is a good Mott insulator, we propose experiments that electrically probe
The Kitaev spin liquid provides a rare example of well-established quantum spin liquids in more than one dimension. It is obtained as the exact ground state of the Kitaev spin model with bond-dependent anisotropic interactions. The peculiar interacti
Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL). In the present work, we firstly propose an effective spin Hamiltonian consistents with the symmetry group of the crystal st
Kitaev materials are promising materials for hosting quantum spin liquids and investigating the interplay of topological and symmetry-breaking phases. We use an unsupervised and interpretable machine-learning method, the tensorial-kernel support vect
We gauge the fermion parity symmetry of the Kitaev chain. While the bulk of the model becomes an Ising chain of gauge-invariant spins in a tilted field, near the boundaries the global fermion parity symmetry survives gauging, leading to local gauge-i