ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Magnetic Hamiltonian at Finite Temperatures for Rare Earth Chalcogenides

95   0   0.0 ( 0 )
 نشر من قبل Zheng Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Alkali metal rare-earth chalcogenide $ARECh2$ (A=alkali or monovalent metal, RE=rare earth, Ch=O, S, Se, Te), is a large family of quantum spin liquid (QSL) candidates we discovered recently. Unlike $YbMgGaO4$, most members in the family except for the oxide ones, have relatively small crystalline electric-field (CEF) excitation levels, particularly the first ones. This makes the conventional Curie-Weiss analysis at finite temperatures inapplicable and CEF excitations may play an essential role in understanding the low-energy spin physics. Here we considered an effective magnetic Hamiltonian incorporating CEF excitations and spin-spin interactions, to accurately describe thermodynamics in such a system. By taking $NaYbSe2$ as an example, we were able to analyze magnetic susceptibility, magnetization under pulsed high fields and heat capacity in a systematic and comprehensive way. The analysis allows us to produce accurate anisotropic exchange coupling energies and unambiguously determine a crossover temperature ($sim$25 K in the case of $NaYbSe2$), below which CEF effects fade away and pure spin-spin interactions stand out. We further validated the effective picture by successfully explaining the anomalous temperature dependence of electron spin resonance (ESR) spectral width. The effective scenario in principle can be generalized to other rare-earth spin systems with small CEF excitations.



قيم البحث

اقرأ أيضاً

Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid (QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbM gGaO$_4$ stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh$_2$ (A = alkali or monovalent ions, Re = rare earth, Ch = O, S, Se). The family compounds share the same structure (R$bar{3}$m) as YbMgGaO$_4$, and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the $c$-axis. Specific heat and magnetic susceptibility measurements on NaYbO$_2$, NaYbS$_2$ and NaYbSe$_2$ single crystals and polycrystals, reveal no structural or magnetic transition down to 50mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO$_4$. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages. This makes the family an ideal platform for fundamental research of QSLs and its promising applications.
463 - Q. Y. Chen , C. H. P. Wen , Q. Yao 2018
Crystal electric field states in rare earth intermetallics show an intricate entanglement with the many-body physics that occurs in these systems and that is known to lead to a plethora of electronic phases. Here, we attempt to trace different contri butions to the crystal electric field (CEF) splittings in CeIrIn$_5$, a heavy-fermion compound and member of the Ce$M$In$_5$ ($M$= Co, Rh, Ir) family. To this end, we utilize high-resolution resonant angle-resolved photoemission spectroscopy (ARPES) and present a spectroscopic study of the electronic structure of this unconventional superconductor over a wide temperature range. As a result, we show how ARPES can be used in combination with thermodynamic measurements or neutron scattering to disentangle different contributions to the CEF splitting in rare earth intermetallics. We also find that the hybridization is stronger in CeIrIn$_5$ than CeCoIn$_5$ and the effects of the hybridization on the Fermi volume increase is much smaller than predicted. By providing the first experimental evidence for $4f_{7/2}^{1}$ splittings which, in CeIrIn$_5$, split the octet into four doublets, we clearly demonstrate the many-body origin of the so-called $4f_{7/2}^{1}$ state.
YbMgGaO$_{4}$, a structurally perfect two-dimensional triangular lattice with odd number of electrons per unit cell and spin-orbit entangled effective spin-1/2 local moments of Yb$^{3+}$ ions, is likely to experimentally realize the quantum spin liqu id ground state. We report the first experimental characterization of single crystal YbMgGaO$_{4}$ samples. Due to the spin-orbit entanglement, the interaction between the neighboring Yb$^{3+}$ moments depends on the bond orientations and is highly anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively determine the couplings. Our result is a first step towards the theoretical understanding of the possible quantum spin liquid ground state in this system and sheds new lights on the search of quantum spin liquids in strong spin-orbit coupled insulators.
Kitaev spin liquid (KSL) system has attracted tremendous attention in past years because of its fundamental significance in condensed matter physics and promising applications in fault-tolerant topological quantum computation. Material realization of such a system remains a major challenge in the field due to the unusual configuration of anisotropic spin interactions, though great effort has been made before. Here we reveal that rare-earth chalcohalides REChX (RE=rare earth, Ch=O, S, Se, Te, X=F, Cl, Br, I) can serve as a family of KSL candidates. Most family members have the typical SmSI-type structure with a high symmetry of R-3m and rare-earth magnetic ions form an undistorted honeycomb lattice. The strong spin-orbit coupling of 4f electrons intrinsically offers anisotropic spin interactions as required by Kitaev model. We have grown the crystals of YbOCl and synthesized the polycrystals of SmSI, ErOF, HoOF and DyOF, and made careful structural characterizations. We carry out magnetic and heat capacity measurements down to 1.8 K and find no obvious magnetic transition in all the samples but DyOF. The van der Waals interlayer coupling highlights the true two-dimensionality of the family which is vital for the exact realization of Abelian/non-Abelian anyons, and the graphene-like feature will be a prominent advantage for developing miniaturized devices. The family is expected to act as an inspiring material platform for the exploration of KSL physics.
Realizing quantum materials in few atomic layer morphologies is a key to both observing and controlling a wide variety of exotic quantum phenomena. This includes topological electronic materials, where the tunability and dimensionality of few layer m aterials have enabled the detection of $Z_2$, Chern, and Majorana phases. Here, we report the development of a platform for thin film correlated, topological states in the magnetic rare-earth monopnictide ($RX$) system GdBi synthesized by molecular beam epitaxy. This material is known from bulk single crystal studies to be semimetallic antiferromagnets with Neel temperature $T_N =$ 28 K and is the magnetic analog of the non-$f$-electron containing system LaBi proposed to have topological surface states. Our transport and magnetization studies of thin films grown epitaxially on BaF$_2$ reveal that semimetallicity is lifted below approximately 8 crystallographic unit cells while magnetic order is maintained down to our minimum thickness of 5 crystallographic unit cells. First-principles calculations show that the non-trivial topology is preserved down to the monolayer limit, where quantum confinement and the lattice symmetry give rise to a $C=2$ Chern insulator phase. We further demonstrate the stabilization of these films against atmospheric degradation using a combination of air-free buffer and capping procedures. These results together identify thin film $RX$ materials as potential platforms for engineering topological electronic bands in correlated magnetic materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا