ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance Evaluation of Machine Learning Techniques for DoS Detection in Wireless Sensor Network

72   0   0.0 ( 0 )
 نشر من قبل Lama Alsulaiman
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The nature of Wireless Sensor Networks (WSN) and the widespread of using WSN introduce many security threats and attacks. An effective Intrusion Detection System (IDS) should be used to detect attacks. Detecting such an attack is challenging, especially the detection of Denial of Service (DoS) attacks. Machine learning classification techniques have been used as an approach for DoS detection. This paper conducted an experiment using Waikato Environment for Knowledge Analysis (WEKA)to evaluate the efficiency of five machine learning algorithms for detecting flooding, grayhole, blackhole, and scheduling at DoS attacks in WSNs. The evaluation is based on a dataset, called WSN-DS. The results showed that the random forest classifier outperforms the other classifiers with an accuracy of 99.72%.



قيم البحث

اقرأ أيضاً

Federated learning (FL) and split learning (SL) are state-of-the-art distributed machine learning techniques to enable machine learning training without accessing raw data on clients or end devices. However, their emph{comparative training performanc e} under real-world resource-restricted Internet of Things (IoT) device settings, e.g., Raspberry Pi, remains barely studied, which, to our knowledge, have not yet been evaluated and compared, rendering inconvenient reference for practitioners. This work firstly provides empirical comparisons of FL and SL in real-world IoT settings regarding (i) learning performance with heterogeneous data distributions and (ii) on-device execution overhead. Our analyses in this work demonstrate that the learning performance of SL is better than FL under an imbalanced data distribution but worse than FL under an extreme non-IID data distribution. Recently, FL and SL are combined to form splitfed learning (SFL) to leverage each of their benefits (e.g., parallel training of FL and lightweight on-device computation requirement of SL). This work then considers FL, SL, and SFL, and mount them on Raspberry Pi devices to evaluate their performance, including training time, communication overhead, power consumption, and memory usage. Besides evaluations, we apply two optimizations. Firstly, we generalize SFL by carefully examining the possibility of a hybrid type of model training at the server-side. The generalized SFL merges sequential (dependent) and parallel (independent) processes of model training and is thus beneficial for a system with large-scaled IoT devices, specifically at the server-side operations. Secondly, we propose pragmatic techniques to substantially reduce the communication overhead by up to four times for the SL and (generalized) SFL.
Automated machine learning (AutoML) aims to find optimal machine learning solutions automatically given a machine learning problem. It could release the burden of data scientists from the multifarious manual tuning process and enable the access of do main experts to the off-the-shelf machine learning solutions without extensive experience. In this paper, we review the current developments of AutoML in terms of three categories, automated feature engineering (AutoFE), automated model and hyperparameter learning (AutoMHL), and automated deep learning (AutoDL). State-of-the-art techniques adopted in the three categories are presented, including Bayesian optimization, reinforcement learning, evolutionary algorithm, and gradient-based approaches. We summarize popular AutoML frameworks and conclude with current open challenges of AutoML.
This paper provides a systematic and comprehensive survey that reviews the latest research efforts focused on machine learning (ML) based performance improvement of wireless networks, while considering all layers of the protocol stack (PHY, MAC and n etwork). First, the related work and paper contributions are discussed, followed by providing the necessary background on data-driven approaches and machine learning for non-machine learning experts to understand all discussed techniques. Then, a comprehensive review is presented on works employing ML-based approaches to optimize the wireless communication parameters settings to achieve improved network quality-of-service (QoS) and quality-of-experience (QoE). We first categorize these works into: radio analysis, MAC analysis and network prediction approaches, followed by subcategories within each. Finally, open challenges and broader perspectives are discussed.
To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.
Recent advances in deep learning renewed the research interests in machine learning for Network Intrusion Detection Systems (NIDS). Specifically, attention has been given to sequential learning models, due to their ability to extract the temporal cha racteristics of Network traffic Flows (NetFlows), and use them for NIDS tasks. However, the applications of these sequential models often consist of transferring and adapting methodologies directly from other fields, without an in-depth investigation on how to leverage the specific circumstances of cybersecurity scenarios; moreover, there is a lack of comprehensive studies on sequential models that rely on NetFlow data, which presents significant advantages over traditional full packet captures. We tackle this problem in this paper. We propose a detailed methodology to extract temporal sequences of NetFlows that denote patterns of malicious activities. Then, we apply this methodology to compare the efficacy of sequential learning models against traditional static learning models. In particular, we perform a fair comparison of a `sequential Long Short-Term Memory (LSTM) against a `static Feedforward Neural Networks (FNN) in distinct environments represented by two well-known datasets for NIDS: the CICIDS2017 and the CTU13. Our results highlight that LSTM achieves comparable performance to FNN in the CICIDS2017 with over 99.5% F1-score; while obtaining superior performance in the CTU13, with 95.7% F1-score against 91.5%. This paper thus paves the way to future applications of sequential learning models for NIDS.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا