ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation and Optimization of Distributed Machine Learning Techniques for Internet of Things

83   0   0.0 ( 0 )
 نشر من قبل Yansong Gao Dr
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) and split learning (SL) are state-of-the-art distributed machine learning techniques to enable machine learning training without accessing raw data on clients or end devices. However, their emph{comparative training performance} under real-world resource-restricted Internet of Things (IoT) device settings, e.g., Raspberry Pi, remains barely studied, which, to our knowledge, have not yet been evaluated and compared, rendering inconvenient reference for practitioners. This work firstly provides empirical comparisons of FL and SL in real-world IoT settings regarding (i) learning performance with heterogeneous data distributions and (ii) on-device execution overhead. Our analyses in this work demonstrate that the learning performance of SL is better than FL under an imbalanced data distribution but worse than FL under an extreme non-IID data distribution. Recently, FL and SL are combined to form splitfed learning (SFL) to leverage each of their benefits (e.g., parallel training of FL and lightweight on-device computation requirement of SL). This work then considers FL, SL, and SFL, and mount them on Raspberry Pi devices to evaluate their performance, including training time, communication overhead, power consumption, and memory usage. Besides evaluations, we apply two optimizations. Firstly, we generalize SFL by carefully examining the possibility of a hybrid type of model training at the server-side. The generalized SFL merges sequential (dependent) and parallel (independent) processes of model training and is thus beneficial for a system with large-scaled IoT devices, specifically at the server-side operations. Secondly, we propose pragmatic techniques to substantially reduce the communication overhead by up to four times for the SL and (generalized) SFL.



قيم البحث

اقرأ أيضاً

The application of Machine Learning (ML) techniques to the well-known intrusion detection systems (IDS) is key to cope with increasingly sophisticated cybersecurity attacks through an effective and efficient detection process. In the context of the I nternet of Things (IoT), most ML-enabled IDS approaches use centralized approaches where IoT devices share their data with data centers for further analysis. To mitigate privacy concerns associated with centralized approaches, in recent years the use of Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems. However, the development of FL-enabled IDS for IoT is in its infancy, and still requires research efforts from various areas, in order to identify the main challenges for the deployment in real-world scenarios. In this direction, our work evaluates a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario. In particular, we use three different settings that are obtained by partitioning the recent ToN_IoT dataset according to IoT devices IP address and types of attack. Furthermore, we evaluate the impact of different aggregation functions according to such setting by using the recent IBMFL framework as FL implementation. Additionally, we identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.
Industrial Internet of Things (IIoT) revolutionizes the future manufacturing facilities by integrating the Internet of Things technologies into industrial settings. With the deployment of massive IIoT devices, it is difficult for the wireless network to support the ubiquitous connections with diverse quality-of-service (QoS) requirements. Although machine learning is regarded as a powerful data-driven tool to optimize wireless network, how to apply machine learning to deal with the massive IIoT problems with unique characteristics remains unsolved. In this paper, we first summarize the QoS requirements of the typical massive non-critical and critical IIoT use cases. We then identify unique characteristics in the massive IIoT scenario, and the corresponding machine learning solutions with its limitations and potential research directions. We further present the existing machine learning solutions for individual layer and cross-layer problems in massive IIoT. Last but not the least, we present a case study of massive access problem based on deep neural network and deep reinforcement learning techniques, respectively, to validate the effectiveness of machine learning in massive IIoT scenario.
Recently developed machine learning techniques, in association with the Internet of Things (IoT) allow for the implementation of a method of increasing oil production from heavy-oil wells. Steam flood injection, a widely used enhanced oil recovery te chnique, uses thermal and gravitational potential to mobilize and dilute heavy oil in situ to increase oil production. In contrast to traditional steam flood simulations based on principles of classic physics, we introduce here an approach using cutting-edge machine learning techniques that have the potential to provide a better way to describe the performance of steam flood. We propose a workflow to address a category of time-series data that can be analyzed with supervised machine learning algorithms and IoT. We demonstrate the effectiveness of the technique for forecasting oil production in steam flood scenarios. Moreover, we build an optimization system that recommends an optimal steam allocation plan, and show that it leads to a 3% improvement in oil production. We develop a minimum viable product on a cloud platform that can implement real-time data collection, transfer, and storage, as well as the training and implementation of a cloud-based machine learning model. This workflow also offers an applicable solution to other problems with similar time-series data structures, like predictive maintenance.
This work is the first attempt to evaluate and compare felderated learning (FL) and split neural networks (SplitNN) in real-world IoT settings in terms of learning performance and device implementation overhead. We consider a variety of datasets, dif ferent model architectures, multiple clients, and various performance metrics. For learning performance, which is specified by the model accuracy and convergence speed metrics, we empirically evaluate both FL and SplitNN under different types of data distributions such as imbalanced and non-independent and identically distributed (non-IID) data. We show that the learning performance of SplitNN is better than FL under an imbalanced data distribution, but worse than FL under an extreme non-IID data distribution. For implementation overhead, we end-to-end mount both FL and SplitNN on Raspberry Pis, and comprehensively evaluate overheads including training time, communication overhead under the real LAN setting, power consumption and memory usage. Our key observations are that under IoT scenario where the communication traffic is the main concern, the FL appears to perform better over SplitNN because FL has the significantly lower communication overhead compared with SplitNN, which empirically corroborate previous statistical analysis. In addition, we reveal several unrecognized limitations about SplitNN, forming the basis for future research.
How to train a machine learning model while keeping the data private and secure? We present CodedPrivateML, a fast and scalable approach to this critical problem. CodedPrivateML keeps both the data and the model information-theoretically private, whi le allowing efficient parallelization of training across distributed workers. We characterize CodedPrivateMLs privacy threshold and prove its convergence for logistic (and linear) regression. Furthermore, via extensive experiments on Amazon EC2, we demonstrate that CodedPrivateML provides significant speedup over cryptographic approaches based on multi-party computing (MPC).

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا