ﻻ يوجد ملخص باللغة العربية
We have employed Gd55Co30NixAl15-x (x = 10, 5 and 0) amorphous microwires as a model system to unravel the impact of multiple magnetic interactions on the magnetism and the magnetocaloric behavior in Gd-alloy microwire systems. Our study shows that in addition to the RKKY ferromagnetic (FM) interaction (Gd-Gd), antiferromagnetic (AFM) interactions (Gd-Co, Gd-Ni) coexist and contribute to the magnetic and magnetocaloric response of the system. The dilution effect of Al element on the FM Gd-Gd interaction is responsible for the decrease of the Curie temperature (TC), whereas the increase of the saturation magnetization (MS) is originated from the reduced AFM Gd-Ni interaction. A thorough analysis of critical exponents suggests that the presence of the AFM interactions hinders the system to exhibit a long-range FM order below the TC. Adjusting these interactions is shown to preserve the large refrigerant capacity (RC) while tuning the TC over a wide temperature range, which is desirable for active magnetic refrigeration.
Inelastic neutron scattering measurements were performed on single crystals of the antiferromagnetic compound Mn5Si3 in order to investigate the relation between the spin dynamics and the magneto-thermodynamic properties. It is shown that among the t
We have investigated magnetocaloric effect in double perovskite Gd2NiMnO6 (GNMO) and Gd2CoMnO6 (GCMO) samples by magnetic and heat capacity measurements. Ferromagnetic ordering is observed at ~130 K (~112 K) in GNMO (GCMO), while the Gd exchange inte
We investigated the microwave properties of polymer based metacomposites containing hybridized parallel Fe- and Co-based microwire arrays. A dual-band left-handed feature was observed in the frequency bands of 1.5 to 5.5 GHz and 9 to 17 GHz, indicate
We report on a novel class of nanocrystalline/amorphous Gd$_3$Ni/Gd$_{65}$Ni$_{35}$ composite microwires, which was created directly by melt-extraction through controlled solidification. X-ray diffraction (XRD) and transmission electron microscopy (T
The chiral clock spin-glass model with q=5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d=3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in