ترغب بنشر مسار تعليمي؟ اضغط هنا

STL Robustness Risk over Discrete-Time Stochastic Processes

180   0   0.0 ( 0 )
 نشر من قبل Lars Lindemann
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a framework to interpret signal temporal logic (STL) formulas over discrete-time stochastic processes in terms of the induced risk. Each realization of a stochastic process either satisfies or violates an STL formula. In fact, we can assign a robustness value to each realization that indicates how robustly this realization satisfies an STL formula. We then define the risk of a stochastic process not satisfying an STL formula robustly, referred to as the STL robustness risk. In our definition, we permit general classes of risk measures such as, but not limited to, the conditional value-at-risk. While in general hard to compute, we propose an approximation of the STL robustness risk. This approximation has the desirable property of being an upper bound of the STL robustness risk when the chosen risk measure is monotone, a property satisfied by most risk measures. Motivated by the interest in data-driven approaches, we present a sampling-based method for estimating the approximate STL robustness risk from data for the value-at-risk. While we consider the value-at-risk, we highlight that such sampling-based methods are viable for other risk measures.


قيم البحث

اقرأ أيضاً

We present a robust control framework for time-critical systems in which satisfying real-time constraints is of utmost importance for the safety of the system. Signal Temporal Logic (STL) provides a formal means to express a variety of real-time cons traints over signals and is suited for planning and control purposes as it allows us to reason about the time robustness of such constraints. The time robustness of STL particularly quantifies the extent to which timing uncertainties can be tolerated without violating real-time specifications. In this paper, we first pose a control problem in which we aim to find an optimal input sequence to a control system that maximizes the time robustness of an STL constraint. We then propose a Mixed Integer Linear Program (MILP) encoding and provide correctness guarantees and a complexity analysis of the encoding. We also show in two case studies that maximizing STL time robustness allows to account for timing uncertainties of the underlying control system.
In this paper, we consider discrete-time partially observed mean-field games with the risk-sensitive optimality criterion. We introduce risk-sensitivity behaviour for each agent via an exponential utility function. In the game model, each agent is we akly coupled with the rest of the population through its individual cost and state dynamics via the empirical distribution of states. We establish the mean-field equilibrium in the infinite-population limit using the technique of converting the underlying original partially observed stochastic control problem to a fully observed one on the belief space and the dynamic programming principle. Then, we show that the mean-field equilibrium policy, when adopted by each agent, forms an approximate Nash equilibrium for games with sufficiently many agents. We first consider finite-horizon cost function, and then, discuss extension of the result to infinite-horizon cost in the next-to-last section of the paper.
The deployment of autonomous systems in uncertain and dynamic environments has raised fundamental questions. Addressing these is pivotal to build fully autonomous systems and requires a systematic integration of planning and control. We first propose reactive risk signal interval temporal logic (ReRiSITL) as an extension of signal temporal logic (STL) to formulate complex spatiotemporal specifications. Unlike STL, ReRiSITL allows to consider uncontrollable propositions that may model humans as well as random environmental events such as sensor failures. Additionally, ReRiSITL allows to incorporate risk measures, such as (but not limited to) the Conditional Value-at-Risk, to measure the risk of violating certain spatial specifications. Second, we propose an algorithm to check if an ReRiSITL specification is satisfiable. For this purpose, we abstract the ReRiSITL specification into a timed signal transducer and devise a game-based approach. Third, we propose a reactive planning and control framework for dynamical control systems under ReRiSITL specifications.
We consider the stochastic shortest path planning problem in MDPs, i.e., the problem of designing policies that ensure reaching a goal state from a given initial state with minimum accrued cost. In order to account for rare but important realizations of the system, we consider a nested dynamic coherent risk total cost functional rather than the conventional risk-neutral total expected cost. Under some assumptions, we show that optimal, stationary, Markovian policies exist and can be found via a special Bellmans equation. We propose a computational technique based on difference convex programs (DCPs) to find the associated value functions and therefore the risk-averse policies. A rover navigation MDP is used to illustrate the proposed methodology with conditional-value-at-risk (CVaR) and entropic-value-at-risk (EVaR) coherent risk measures.
This paper presents a control strategy based on a new notion of time-varying fixed-time convergent control barrier functions (TFCBFs) for a class of coupled multi-agent systems under signal temporal logic (STL) tasks. In this framework, each agent is assigned a local STL task regradless of the tasks of other agents. Each task may be dependent on the behavior of other agents which may cause conflicts on the satisfaction of all tasks. Our approach finds a robust solution to guarantee the fixed-time satisfaction of STL tasks in a least violating way and independent of the agents initial condition in the presence of undesired violation effects of the neighbor agents. Particularly, the robust performance of the task satisfactions can be adjusted in a user-specified way.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا