ﻻ يوجد ملخص باللغة العربية
This paper presents a control strategy based on a new notion of time-varying fixed-time convergent control barrier functions (TFCBFs) for a class of coupled multi-agent systems under signal temporal logic (STL) tasks. In this framework, each agent is assigned a local STL task regradless of the tasks of other agents. Each task may be dependent on the behavior of other agents which may cause conflicts on the satisfaction of all tasks. Our approach finds a robust solution to guarantee the fixed-time satisfaction of STL tasks in a least violating way and independent of the agents initial condition in the presence of undesired violation effects of the neighbor agents. Particularly, the robust performance of the task satisfactions can be adjusted in a user-specified way.
This paper presents a control strategy based on time-varying fixed-time convergent higher order control barrier functions for a class of leader-follower multi-agent systems under signal temporal logic (STL) tasks. Each agent is assigned a local STL t
We study the problem of controlling multi-agent systems under a set of signal temporal logic tasks. Signal temporal logic is a formalism that is used to express time and space constraints for dynamical systems. Recent methods to solve the control syn
In this paper, we introduce the notion of periodic safety, which requires that the system trajectories periodically visit a subset of a forward-invariant safe set, and utilize it in a multi-rate framework where a high-level planner generates a refere
We present a robust control framework for time-critical systems in which satisfying real-time constraints is of utmost importance for the safety of the system. Signal Temporal Logic (STL) provides a formal means to express a variety of real-time cons
In this paper we present a multi-rate control architecture for safety critical systems. We consider a high level planner and a low level controller which operate at different frequencies. This multi-rate behavior is described by a piecewise nonlinear