ﻻ يوجد ملخص باللغة العربية
The layered material ZrSiTe is currently extensively investigated as a nodal-line semimetal with Dirac-like band crossings protected by nonsymmorphic symmetry close to the Fermi energy. A recent infrared spectroscopy study on ZrSiTe under external pressure found anomalies in the optical response, providing hints for pressure-induced phase transitions at $approx$4.1 and $approx$6.5 GPa. By pressure-dependent Raman spectroscopy and x-ray diffraction measurements combined with electronic band structure calculations we find indications for two pressure-induced Lifshitz transitions with major changes in the Fermi surface topology in the absence of lattice symmetry changes. These electronic phase transitions can be attributed to the enhanced interlayer interaction induced by external pressure. Our findings demonstrate the crucial role of the interlayer distance for the electronic properties of layered van der Waals topological materials.
Here we report an ultrafast optical spectroscopic study of the nodal-line semimetal ZrSiTe. Our measurements reveal that, converse to other compounds of the family, the sudden injection of electronic excitations results in a strongly coherent respons
We have applied nuclear magnetic resonance spectroscopy to study the distinctive network of nodal lines in the Dirac semimetal ZrSiTe. The low-$T$ behavior is dominated by a symmetry-protected nodal line, with NMR providing a sensitive probe of the d
We instigate the angle-dependent magnetoresistance (AMR) of the layered nodal-line Dirac semimetal ZrSiS for the in-plane and out-of-plane current directions. This material has recently revealed an intriguing butterfly-shaped in-plane AMR that is not
We report the electronic properties of single crystals of candidate nodal-line semimetal CaAgP. The transport properties of CaAgP are understood within the framework of a hole-doped nodal-line semimetal. In contrast, Pd-doped CaAgP shows a drastic in
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo