ﻻ يوجد ملخص باللغة العربية
Searches for continuous gravitational waves from textit{unknown} Galactic neutron stars provide limits on the shapes of neutron stars. A rotating neutron star will produce gravitational waves if asymmetric deformations exist in its structure that are characterized by the stars ellipticity. In this study, we use a simple model of the spatial and spin distribution of Galactic neutron stars to estimate the total number of neutron stars probed, using gravitational waves, to a given upper limit on the ellipticity. This may help optimize future searches with improved sensitivity. The improved sensitivity of third-generation gravitational wave detectors may increase the number of neutron stars probed, to a given ellipticity, by factors of 100 to 1000.
We investigate the gravitational wave (GW) signal generated by a population of double neutron-star binaries (DNS) with eccentric orbits caused by kicks during supernova collapse and binary evolution. The DNS population of a standard Milky-Way type ga
The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less mas
GW170817/GRB170817A, a short gamma-ray burst arising from a low-mass compact object merger was the first multi-messenger discovery of a compact binary system outside the local galactic neighborhood. From gravitational-wave measurements, we know GW170
The LIGOs discovery of binary black hole mergers has opened up a new era of transient gravitational wave astronomy. The potential detection of gravitational radiation from another class of astronomical objects, rapidly spinning non-axisymmetric neutr
We present a new veto procedure to distinguish between continuous gravitational wave (CW) signals and the detector artifacts that can mimic their behavior. The veto procedure exploits the fact that a long-lasting coherent disturbance is less likely t