ﻻ يوجد ملخص باللغة العربية
The equation of state plays a critical role in the physics of the merger of two neutron stars. Recent numerical simulations with microphysical equation of state suggest the outcome of such events depends on the mass of the neutron stars. For less massive systems, simulations favor the formation of a hypermassive, quasi-stable neutron star, whose oscillations produce a short, high frequency burst of gravitational radiation. Its dominant frequency content is tightly correlated with the radius of the neutron star, and its measurement can be used to constrain the supranuclear equation of state. In contrast, the merger of higher mass systems results in prompt gravitational collapse to a black hole. We have developed an algorithm which combines waveform reconstruction from a morphology-independent search for gravitational wave transients with Bayesian model selection, to discriminate between post-merger scenarios and accurately measure the dominant oscillation frequency. We demonstrate the efficacy of the method using a catalogue of simulated binary merger signals in data from LIGO and Virgo, and we discuss the prospects for this analysis in advanced ground-based gravitational wave detectors. From the waveforms considered in this work and assuming an optimally oriented source, we find that the post-merger neutron star signal may be detectable by this technique to $sim 10text{--}25$,Mpc. We also find that we successfully discriminate between the post-merger scenarios with $sim 95%$ accuracy and determine the dominant oscillation frequency of surviving post-merger neutron stars to within $sim 10$,Hz, averaged over all detected signals. This leads to an uncertainty in the estimated radius of a non-rotating 1.6,M$_{odot}$ reference neutron star of $sim 100,$m.
We estimated the sensitivity of the upcoming advanced, ground-based gravitational-wave observatories (the upgraded LIGO and Virgo and the KAGRA interferometers) to coalescing intermediate mass black hole binaries (IMBHB). We added waveforms modeling
Gravitational wave memory is theorized to arise from the integrated history of gravitational wave emission, and manifests as a spacetime deformation in the wake of a propagating gravitational wave. We explore the detectability of the memory signals f
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars angu
We present a detailed evaluation of the expected rate of joint gravitational-wave and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the gravitational wave search that