ﻻ يوجد ملخص باللغة العربية
We present a new veto procedure to distinguish between continuous gravitational wave (CW) signals and the detector artifacts that can mimic their behavior. The veto procedure exploits the fact that a long-lasting coherent disturbance is less likely than a real signal to exhibit a Doppler modulation of astrophysical origin. Therefore, in the presence of an outlier from a search, we perform a multi-step search around the frequency of the outlier with the Doppler modulation turned off (DM-off), and compare these results with the results from the original (DM-on) search. If the results from the DM-off search are more significant than those from the DM-on search, the outlier is most likely due to an artifact rather than a signal. We tune the veto procedure so that it has a very low false dismissal rate. With this veto, we are able to identify as coherent disturbances >99.9% of the 6349 candidates from the recent all-sky low-frequency Einstein@Home search on the data from the Advanced LIGO O1 observing run [1]. We present the details of each identified disturbance in the Appendix.
$chi^2$ vetoes are commonly used in searching for gravitational waves, in particular for broad-band signals, but they can also be applied to narrow-band continuous wave signals, such as those expected from rapidly rotating neutron stars. In this pape
In hierarchical searches for continuous gravitational waves, clustering of candidates is an important postprocessing step because it reduces the number of noise candidates that are followed-up at successive stages [1][7][12]. Previous clustering proc
This document describes a code to perform parameter estimation and model selection in targeted searches for continuous gravitational waves from known pulsars using data from ground-based gravitational wave detectors. We describe the general workings
Gravitational waves in the sensitivity band of ground-based detectors can be emitted by a number of astrophysical sources, including not only binary coalescences, but also individual spinning neutron stars. The most promising signals from such source
Gravitational wave astronomy opened dramatically in September 2015 with the LIGO discovery of a distant and massive binary black hole coalescence. The more recent discovery of a binary neutron star merger, followed by a gamma ray burst and a kilonova