ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical bonding and Born charge in 1T-HfS$_2$

89   0   0.0 ( 0 )
 نشر من قبل Turan Birol
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We combine infrared absorption and Raman scattering spectroscopies to explore the properties of the heavy transition metal dichalcogenide 1T-HfS$_2$. We employ the LO-TO splitting of the $E_u$ vibrational mode along with a reevaluation of mode mass, unit cell volume, and dielectric constant to reveal the Born effective charge. We find $Z^*_{rm{B}}$ = 5.3$e$, in excellent agreement with complementary first principles calculations. In addition to resolving controversy over the nature of chemical bonding in this system, we decompose Born charge into polarizability and local charge. We find $alpha$ = 5.07 AA$^3$ and $Z^{*}$ = 5.2$e$, respectively. Polar displacement-induced charge transfer from sulfur $p$ to hafnium $d$ is responsible for the enhanced Born charge compared to the nominal 4+ in hafnium. 1T-HfS$_2$ is thus an ionic crystal with strong and dynamic covalent effects. Taken together, our work places the vibrational properties of 1T-HfS$_2$ on a firm foundation and opens the door to understanding the properties of tubes and sheets.


قيم البحث

اقرأ أيضاً

In this study, using low-temperature scanning tunneling microscopy (STM), we focus on understanding the native defects in pristine textit{1T}-TiSe$_2$ at the atomic scale. We probe how they perturb the charge density waves (CDWs) and lead to local do main formation. These defects influence the correlation length of CDWs. We establish a connection between suppression of CDWs, Ti intercalation, and show how this supports the exciton condensation model of CDW formation in textit{1T}-TiSe$_2$.
By combining electron energy-loss spectroscopy and state-of-the-art computational methods, we were able to provide an extensive picture of the excitonic processes in $1T$-HfS$_2$. The results differ significantly from the properties of the more scrut inized group VI semiconducting transition metal dichalcogenides such as MoS$_2$ and WSe$_2$. The measurements revealed a parabolic exciton dispersion for finite momentum $textbf{q}$ parallel to the $Gamma$K direction which allowed the determination of the effective exciton mass. The dispersion decreases monotonically for momentum exchanges parallel to the $Gamma$M high symmetry line. To gain further insight into the excitation mechanisms, we solved the ab-initio Bethe-Salpeter equation for the system. The results matched the experimental loss spectra closely, thereby confirming the excitonic nature of the observed transitions, and produced the momentumdependent binding energies. The simulations also demonstrated that the excitonic transitions for $textbf{q}$ || $Gamma$M occur exactly along that particular high symmetry line. For $textbf{q}$ || $Gamma$K on the other hand, the excitations traverse the Brillouin zone crossing various high symmetry lines. A particular interesting aspect of our findings was that the calculation of the electron probability density revealed that the exciton assumes a six-pointed star-like shape along the real space crystal planes indicating a mixed Frenkel-Wannier character.
Subtle changes in chemical bonds may result in dramatic revolutions in magnetic properties in solid state materials. MnPt5P, a new derivative of the rare-earth-free ferromagnetic MnPt5As, was discovered and is presented in this work. MnPt5P was synth esized and its crystal structure and chemical composition were characterized by X-ray diffraction as well as energy-dispersive X-ray spectroscopy. Accordingly, MnPt5P crystallizes in the layered tetragonal structure with the space group P4/mmm (No. 123), in which the face-shared Mn@Pt12 polyhedral layers are separated by P layers. In contrast to the ferromagnetism observed in MnPt5As, the magnetic properties measurements on MnPt5P show antiferromagnetic ordering occurs at ~188 K with a strong magnetic anisotropy in and out of the ab-plane. Moreover, a spin-flop transition appears when a high magnetic field is applied. An A-type antiferromagnetic structure was obtained from the analysis of powder neutron diffraction (PND) patterns collected at 150 K and 9 K. Calculated electronic structures imply that hybridization of Mn-3d and Pt-5d orbitals are critical for both the structural stability and observed magnetic properties. Semi-empirical molecular orbitals calculations on both MnPt5P and MnPt5As indicate that the lack of 4p character on the P atoms at the highest occupied molecular orbital (HOMO) in MnPt5P may cause the different magnetic behavior in MnPt5P compared to MnPt5As. The discovery of MnPt5P, along with our previously reported MnPt5As, parametrizes the end points of a tunable system to study the chemical bonding which tunes the magnetic ordering from ferromagnetism to antiferromagnetism with strong spin-orbit coupling (SOC) effect.
With the use of density functional theory calculations and addition of van der Waals correction, the graphene/HfS$_2$ heterojunction is constructed, and its electronic properties are examined thoroughly. This interface is determined as $n$-type Ohmic and the impacts of different amounts of interlayer distance and strain on the contact are shown using Schottky barrier height and electron injection efficiency. Dipole moment and workfunction of the interface are also altered when subjected to change in these two categories. The transition between Ohmic to Schottky contact is also depicted to be possible by applying a perpendicular electric field, proving this to be yet another useful method for tuning different properties of this structure. The conclusions given in this paper can exert an immense amount of influence on the development of two-dimensional HfS$_2$ based devices in the future.
We study the impact of Cu intercalation on the charge density wave (CDW) in 1T-Cu$_{text{x}}$TiSe$_{text{2}}$ by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate randomly on the octahedral site in the van der Waals gap and to dope delocalized electrons near the Fermi level. While the CDW modulation period does not depend on Cu content, we observe the formation of charge stripe domains at low Cu content (x$<$0.02) and a breaking up of the commensurate order into 2$times$2 domains at higher Cu content. The latter shrink with increasing Cu concentration and tend to be phase-shifted. These findings invalidate a proposed excitonic pairing as the primary CDW formation mechanism in this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا