ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbation of charge density waves in 1T-TiSe$_2$

91   0   0.0 ( 0 )
 نشر من قبل Imrankhan Mulani
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this study, using low-temperature scanning tunneling microscopy (STM), we focus on understanding the native defects in pristine textit{1T}-TiSe$_2$ at the atomic scale. We probe how they perturb the charge density waves (CDWs) and lead to local domain formation. These defects influence the correlation length of CDWs. We establish a connection between suppression of CDWs, Ti intercalation, and show how this supports the exciton condensation model of CDW formation in textit{1T}-TiSe$_2$.


قيم البحث

اقرأ أيضاً

In Ti-intercalated self-doped $1T$-TiSe$_2$ crystals, the charge density wave (CDW) superstructure induces two nonequivalent sites for Ti dopants. Recently, it has been shown that increasing Ti doping dramatically influences the CDW by breaking it in to phase-shifted domains. Here, we report scanning tunneling microscopy and spectroscopy experiments that reveal a dopant-site dependence of the CDW gap. Supported by density functional theory, we demonstrate that the loss of the longrange phase coherence introduces an imbalance in the intercalated-Ti site distribution and restrains the CDW gap closure. This local resilient behavior of the $1T$-TiSe$_2$ CDW reveals a novel mechanism between CDW and defects in mutual influence.
We study the impact of Cu intercalation on the charge density wave (CDW) in 1T-Cu$_{text{x}}$TiSe$_{text{2}}$ by scanning tunneling microscopy and spectroscopy. Cu atoms, identified through density functional theory modeling, are found to intercalate randomly on the octahedral site in the van der Waals gap and to dope delocalized electrons near the Fermi level. While the CDW modulation period does not depend on Cu content, we observe the formation of charge stripe domains at low Cu content (x$<$0.02) and a breaking up of the commensurate order into 2$times$2 domains at higher Cu content. The latter shrink with increasing Cu concentration and tend to be phase-shifted. These findings invalidate a proposed excitonic pairing as the primary CDW formation mechanism in this material.
Strongly correlated materials possess a complex energy landscape and host many interesting physical phenomena, including charge density waves (CDWs). CDWs have been observed and extensively studied in many materials since their first discovery in 197 2. Yet, they present ample opportunities for discovery. Here, we report a large tunability in the optical response of a quasi-2D CDW material, 1T-TaS$_2$, upon incoherent light illumination at room temperature. We show that the observed tunability is a consequence of light-induced rearrangement of CDW stacking across the layers of 1T-TaS$_2$. Our model, based on this hypothesis, agrees reasonably well with experiments suggesting that the interdomain CDW interaction is a vital knob to control the phase of strongly correlated materials.
Charge density wave (CDW) is a collective quantum phenomenon in metals and features a wave-like modulation of the conduction electron density. A microscopic understanding and experimental control of this many-body electronic state in atomically thin materials remain hot topics in condensed matter physics. Here we report an interface and/or Zr intercalation induced semiconductor-metal phase transition, as well as a concomitant (2 $times$ 2) CDW order in 1T-ZrX$_2$ (X = Se, Te) thin films prepared on graphitized SiC(0001) substrates. Also observed has been a sizable CDW energy gap up to 22 meV opened at the Fermi level. Fourier-transformed scanning tunneling microscopy reveals a rather simple Fermi surface, consisting only of Zr 4d-derived conduction band at the corners of the Brillouin zone. Our finding that such a simple electronic structure is compatible with the CDW phase proves intriguing and challenges several prevailing scenarios for the formation of CDW in transition metal dichalcogenides.
128 - J. J. Gao , W. H. Zhang , J. G. Si 2021
We investigate the Ti-doping effect on the charge density wave (CDW) of 1T-TaS2 by combining scanning tunneling microscopy (STM) measurements and first-principle calculations. Although the Ti-doping induced phase evolution seems regular with increasi ng of the doping concentration (x), an unexpected chiral CDW phase is observed in the sample with x = 0.08, in which Ti atoms almost fully occupy the central Ta atoms in the CDW clusters. The emergence of the chiral CDW is proposed to be from the doping-enhanced orbital order. Only when x = 0.08, the possible long-range orbital order can trigger the chiral CDW phase. Compared with other 3d-elements doped 1T-TaS2, the Ti-doping retains the electronic flat band and the corresponding CDW phase, which is a prerequisite for the emergence of chirality. We expect that introducing elements with a strong orbital character may induce a chiral charge order in a broad class of CDW systems. The present results open up another avenue for further exploring the chiral CDW materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا