ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground state features and spectral properties of large polaron liquids from low to high charge densities

59   0   0.0 ( 0 )
 نشر من قبل Carmine Antonio Perroni
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new variational approach is proposed at zero temperature for a finite density of charge carriers in order to study ground state features of the Frohlich model including electron-electron and electron-phonon interactions. Within the intermediate electron-phonon coupling regime characteristic of large polarons, the approach takes into account on the same footing polaron formation and polaron-polaron correlations which play a relevant role going from low to high charge densities. Including fluctuations on top of the variational approach, the electronic spectral function is calculated from the weak to the intermediate electron-phonon coupling regime finding a peak-dip-hump line shape. The spectra are characterized by a transfer of spectral weight from the incoherent hump to the coherent peak with decreasing the electron-phonon coupling constant or with increasing the particle density. Three different density regimes stem out: the first, at low densities, where the features of a single large polaron with a substantial incoherent spectral weight are not modified by charge carrier interactions; a second one, at intermediate densities, where the polaronic liquid shows a rapid crossover from incoherent to coherent dynamics; the third one, at high densities, where screening effects are so prominent that the system presents a conventional metallic phase. The results obtained in the low to intermediate density regime turn out to be relevant for the interpretation of recent tunneling and photoemission experiments in SrTiO3-based systems.



قيم البحث

اقرأ أيضاً

X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
Using ab initio band structure and model calculations we studied magnetic properties of one of the Mn$_4$ molecular magnets (Mn4(hmp)6), where two types of the Mn ions exist: Mn3+ and Mn2+. The direct calculation of the exchange constants in the GGA+ U approximation shows that in contrast to a common belief the strongest exchange coupling is not between two Mn3+ ions (J_{bb}), but along two out of four exchange paths connecting Mn3+ and Mn2+ ions (J_{wb}). The microscopic analysis performed within the perturbation theory allowed to establish the mechanism for this largest ferromagnetic exchange constant. The charge ordering of the Mn ions results in the situation when the energy of the excited state in the exchange process is defined not by the large on-site Coulomb repulsion U, but by much smaller energy V, which stabilizes the charge ordered state. Together with strong Hunds rule coupling and specific orbital order this leads to a large ferromagnetic exchange interaction for two out of four Mn2+ --Mn3+ pairs.
100 - Li Huang , Ruofan Chen , Haiyan Lu 2020
The ground state electronic structure and magnetic behaviors of curium dioxide (CmO$_{2}$) are controversial. In general, the formal valence of Cm ions in CmO$_{2}$ should be tetravalent. It implies a $5f^{6.0}$ electronic configuration and a non-mag netic ground state. However, it is in sharp contrast with the large magnetic moment measured by painstaking experiments. In order to clarify this contradiction, we tried to study the ground state electronic structure of CmO$_{2}$ by means of a combination of density functional theory and dynamical mean-field theory. We find that CmO$_{2}$ is a wide-gap charge transfer insulator with strong 5$f$ valence state fluctuation. It belongs to a mixed-valence compound indeed. The predominant electronic configurations for Cm ions are $5f^{6.0}$ and $5f^{7.0}$. The resulting magnetic moment agrees quite well with the experimental value. Therefore, the magnetic puzzle in CmO$_{2}$ can be appropriately explained by the mixed-valence scenario.
We investigate a ladder system with two inequivalent legs, namely a Hubbard chain and a one-dimensional electron gas. Analytical approximations, the density matrix renormalization group method, and continuous-time quantum Monte Carlo simulations are used to determine ground-state properties, gaps, and spectral functions of this system at half-filling. Evidence for the existence of four different phases as a function of the Hubbard interaction and the rung hopping is presented. First, a Luttinger liquid exists at very weak interchain hopping. Second, a Kondo-Mott insulator with spin and charge gaps induced by an effective rung exchange coupling is found at moderate interchain hopping or strong Hubbard interaction. Third, a spin-gapped paramagnetic Mott insulator with incommensurate excitations and pairing of doped charges is observed at intermediate values of the rung hopping and the interaction. Fourth, the usual correlated band insulator is recovered for large rung hopping. We show that the wavenumbers of the lowest single-particle excitations are different in each insulating phase. In particular, the three gapped phases exhibit markedly different spectral functions. We discuss the relevance of asymmetric two-leg ladder systems as models for atomic wires deposited on a substrate.
We show that the charge density wave (CDW) ground state below the Peierls transition temperature, $T_{CDW}$, of rare-earth tritellurides is not at its equilibrium value, but depends on the time where the system was kept at a fixed temperature below $ T_{CDW}$. This ergodicity breaking is revealed by the increase of the threshold electric field for CDW sliding which depends exponentially on time. We tentatively explain this behavior by the reorganization of the oligomeric (Te$_x$)$^{2-}$ sequence forming the CDW modulation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا