ﻻ يوجد ملخص باللغة العربية
X-ray scattering by multiferroic LuFe2O4 is reported. Below 320 K, superstructure reflections indicate an incommensurate charge order with propagation close to (1/3,1/3,3/2). The corresponding charge configuration, also found by electronic structure calculations as most stable, contains polar Fe/O double-layers with antiferroelectric stacking. Diffuse scattering at 360 K, with (1/3,1/3,0) propagation, indicates ferroelectric short-range correlations between neighboring double-layers. The temperature dependence of the incommensuration indicates that charge order and magnetism are coupled.
We present the refinement of the crystal structure of charge-ordered LuFe2O4, based on single-crystal x-ray diffraction data. The arrangement of the different Fe-valence states, determined with bond-valence-sum analysis, corresponds to a stacking of
The transmission electron microscopy observations of the charge ordering (CO) which governs the electronic polarization in LuFe2O4-x clearly show the presence of a remarkable phase separation at low temperatures. Two CO ground states are found to ado
The combination of charge and spin degrees of freedom with electronic correlations in condensed matter systems leads to a rich array of phenomena, such as magnetism, superconductivity, and novel conduction mechanisms. While such phenomena are observe
The influence of spin-orbit coupling (SOC) on the physical properties of the 5d2 system Sr2MgOsO6 is probed via a combination of magnetometry, specific heat measurements, elastic and inelastic neutron scattering, and density functional theory calcula
A new variational approach is proposed at zero temperature for a finite density of charge carriers in order to study ground state features of the Frohlich model including electron-electron and electron-phonon interactions. Within the intermediate ele