ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Convergence Time of Federated Learning Over Wireless Networks Under Imperfect CSI

84   0   0.0 ( 0 )
 نشر من قبل Francesco Pase
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated learning (FL) has recently emerged as an attractive decentralized solution for wireless networks to collaboratively train a shared model while keeping data localized. As a general approach, existing FL methods tend to assume perfect knowledge of the Channel State Information (CSI) during the training phase, which may not be easy to acquire in case of fast fading channels. Moreover, literature analyses either consider a fixed number of clients participating in the training of the federated model, or simply assume that all clients operate at the maximum achievable rate to transmit model data. In this paper, we fill these gaps by proposing a training process that takes channel statistics as a bias to minimize the convergence time under imperfect CSI. Numerical experiments demonstrate that it is possible to reduce the training time by neglecting model updates from clients that cannot sustain a minimum predefined transmission rate. We also examine the trade-off between number of clients involved in the training process and model accuracy as a function of different fading regimes.



قيم البحث

اقرأ أيضاً

There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its adva ntages in data privacy-preserving, Federated Learning (FL) still has challenges in heterogeneity across UEs data and physical resources. We first propose a FL algorithm which can handle the heterogeneous UEs data challenge without further assumptions except strongly convex and smooth loss functions. We provide the convergence rate characterizing the trade-off between local computation rounds of UE to update its local model and global communication rounds to update the FL global model. We then employ the proposed FL algorithm in wireless networks as a resource allocation optimization problem that captures the trade-off between the FL convergence wall clock time and energy consumption of UEs with heterogeneous computing and power resources. Even though the wireless resource allocation problem of FL is non-convex, we exploit this problems structure to decompose it into three sub-problems and analyze their closed-form solutions as well as insights to problem design. Finally, we illustrate the theoretical analysis for the new algorithm with Tensorflow experiments and extensive numerical results for the wireless resource allocation sub-problems. The experiment results not only verify the theoretical convergence but also show that our proposed algorithm outperforms the vanilla FedAvg algorithm in terms of convergence rate and testing accuracy.
265 - Shuo Wan , Jiaxun Lu , Pingyi Fan 2021
Federated learning (FL) has recently emerged as an important and promising learning scheme in IoT, enabling devices to jointly learn a model without sharing their raw data sets. However, as the training data in FL is not collected and stored centrall y, FL training requires frequent model exchange, which is largely affected by the wireless communication network. Therein, limited bandwidth and random package loss restrict interactions in training. Meanwhile, the insufficient message synchronization among distributed clients could also affect FL convergence. In this paper, we analyze the convergence rate of FL training considering the joint impact of communication network and training settings. Further by considering the training costs in terms of time and power, the optimal scheduling problems for communication networks are formulated. The developed theoretical results can be used to assist the system parameter selections and explain the principle of how the wireless communication system could influence the distributed training process and network scheduling.
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of SignSGD in which only the signs of the gradients are exchanged. Moreover, most of the existing works assume Channel State Information (CSI) available at both the mobile devices and the parameter server, and thus the mobile devices can adopt fixed transmission rates dictated by the channel capacity. In this work, only the parameter server side CSI is assumed, and channel capacity with outage is considered. In this case, an essential problem for the mobile devices is to select appropriate local processing and communication parameters (including the transmission rates) to achieve a desired balance between the overall learning performance and their energy consumption. Two optimization problems are formulated and solved, which optimize the learning performance given the energy consumption requirement, and vice versa. Furthermore, considering that the data may be distributed across the mobile devices in a highly uneven fashion in FL, a stochastic sign-based algorithm is proposed. Extensive simulations are performed to demonstrate the effectiveness of the proposed methods.
This paper formulates and studies a novel algorithm for federated learning from large collections of local datasets. This algorithm capitalizes on an intrinsic network structure that relates the local datasets via an undirected empirical graph. We mo del such big data over networks using a networked linear regression model. Each local dataset has individual regression weights. The weights of close-knit sub-collections of local datasets are enforced to deviate only little. This lends naturally to a network Lasso problem which we solve using a primal-dual method. We obtain a distributed federated learning algorithm via a message passing implementation of this primal-dual method. We provide a detailed analysis of the statistical and computational properties of the resulting federated learning algorithm.
Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, firstly, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across multiple edge access points, leading to incompletion of inconsistent FL training. Secondly, we provide the convergence analysis of HFL with user mobility. Our analysis proves that the learning performance of HFL deteriorates drastically with highly-mobile users. And this decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among local data of users. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule and model aggregation scheme. Finally, we provide experiments to evaluate the learning performance of HFL and our MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases, namely, the case of users with non-independent and identical distribution data, the case of users with high mobility, and the cases with a small number of users.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا