ﻻ يوجد ملخص باللغة العربية
Implementing federated learning (FL) algorithms in wireless networks has garnered a wide range of attention. However, few works have considered the impact of user mobility on the learning performance. To fill this research gap, firstly, we develop a theoretical model to characterize the hierarchical federated learning (HFL) algorithm in wireless networks where the mobile users may roam across multiple edge access points, leading to incompletion of inconsistent FL training. Secondly, we provide the convergence analysis of HFL with user mobility. Our analysis proves that the learning performance of HFL deteriorates drastically with highly-mobile users. And this decline in the learning performance will be exacerbated with small number of participants and large data distribution divergences among local data of users. To circumvent these issues, we propose a mobility-aware cluster federated learning (MACFL) algorithm by redesigning the access mechanism, local update rule and model aggregation scheme. Finally, we provide experiments to evaluate the learning performance of HFL and our MACFL. The results show that our MACFL can enhance the learning performance, especially for three different cases, namely, the case of users with non-independent and identical distribution data, the case of users with high mobility, and the cases with a small number of users.
Motivated by the prediction of cell loads in cellular networks, we formulate the following new, fundamental problem of statistical learning of geometric marks of point processes: An unknown marking function, depending on the geometry of point pattern
Time synchronization is important for a variety of applications in wireless sensor networks including scheduling communication resources, coordinating sensor wake/sleep cycles, and aligning signals for distributed transmission/reception. This paper d
There is an increasing interest in a fast-growing machine learning technique called Federated Learning, in which the model training is distributed over mobile user equipments (UEs), exploiting UEs local computation and training data. Despite its adva
In federated learning (FL), reducing the communication overhead is one of the most critical challenges since the parameter server and the mobile devices share the training parameters over wireless links. With such consideration, we adopt the idea of
Federated learning (FL) has recently emerged as an important and promising learning scheme in IoT, enabling devices to jointly learn a model without sharing their raw data sets. However, as the training data in FL is not collected and stored centrall