ﻻ يوجد ملخص باللغة العربية
Experimental studies of cell motility in culture have shown that under adequate conditions these living organisms possess the ability to organize themselves into complex structures. Such structures may exhibit a synergy that greatly increases their survival rate and facilitate growth or spreading to different tissues. These properties are even more significant for cancer cells and related pathologies. Theoretical studies supported by experimental evidence have also shown that adhesion plays a significant role in cellular organization. Here we show that the directional persistence observed in polarized displacements permits the formation of stable cell aggregates in the absence of adhesion, even in low-density regimes. We introduce a discrete stochastic model for the dispersal of polarized cells with exclusion and derive the hydrodynamic limit. We demonstrate that the persistence coupled with the cell-cell exclusion hinders the cellular motility around other cells, leading to a non-linear diffusion which facilitates their capture into larger aggregates.
We investigate clustering of malignant glioma cells. emph{In vitro} experiments in collagen gels identified a cell line that formed clusters in a region of low cell density, whereas a very similar cell line (which lacks an important mutation) did not
Universality in the behavior of complex systems often reveals itself in the form of scale-invariant distributions that are essentially independent of the details of the microscopic dynamics. A representative paradigm of complex behavior in nature is
We study the dynamics of exchange value in a system composed of many interacting agents. The simple model we propose exhibits cooperative emergence and collapse of global value for individual goods. We demonstrate that the demand that drives the valu
Anomalous diffusion, manifest as a nonlinear temporal evolution of the position mean square displacement, and/or non-Gaussian features of the position statistics, is prevalent in biological transport processes. Likewise, collective behavior is often
We are interested in the tail behavior of the pdf of mass density within the one and $d$-dimensional Burgers/adhesion model used, e.g., to model the formation of large-scale structures in the Universe after baryon-photon decoupling. We show that larg