ﻻ يوجد ملخص باللغة العربية
Air traffic control is becoming a more and more complex task due to the increasing number of aircraft. Current air traffic control methods are not suitable for managing this increased traffic. Autonomous air traffic control is deemed a promising alternative. In this paper an air traffic control model is presented that guides an arbitrary number of aircraft across a three-dimensional, unstructured airspace while avoiding conflicts and collisions. This is done utilizing the power of graph based deep learning approaches. These approaches offer significant advantages over current approaches to this task, such as invariance to the input ordering of aircraft and the ability to easily cope with a varying number of aircraft. Results acquired using these approaches show that the air traffic control model performs well on realistic traffic densities; it is capable of managing the airspace by avoiding 100% of potential collisions and preventing 89.8% of potential conflicts.
The connectivity aspect of connected autonomous vehicles (CAV) is beneficial because it facilitates dissemination of traffic-related information to vehicles through Vehicle-to-External (V2X) communication. Onboard sensing equipment including LiDAR an
Knowledge transfer is a promising concept to achieve real-time decision-making for autonomous vehicles. This paper constructs a transfer deep reinforcement learning framework to transform the driving tasks in inter-section environments. The driving m
Decision-making strategy for autonomous vehicles de-scribes a sequence of driving maneuvers to achieve a certain navigational mission. This paper utilizes the deep reinforcement learning (DRL) method to address the continuous-horizon decision-making
In this letter, we introduce a deep reinforcement learning (RL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory o
Decision-making module enables autonomous vehicles to reach appropriate maneuvers in the complex urban environments, especially the intersection situations. This work proposes a deep reinforcement learning (DRL) based left-turn decision-making framew