ترغب بنشر مسار تعليمي؟ اضغط هنا

The Effect of Thermal Pressure on Collisionless Magnetic Reconnection Rate

307   0   0.0 ( 0 )
 نشر من قبل Xiaocan Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling collisionless magnetic reconnection rate is an outstanding challenge in basic plasma physics research. While the seemingly universal rate of an order $mathcal{O}(0.1)$ is often reported in the low-$beta$ regime, it is not clear how reconnection rate scales with a higher plasma $beta$. Due to the complexity of the pressure tensor, the available reconnection rate model is limited to the low plasma-$beta$ regime, where the thermal pressure is arguably negligible. However, the thermal pressure effect becomes important when $beta gtrsim mathcal{O}(1)$. Using first-principle kinetic simulations, we show that both the reconnection rate and outflow speed drop as $beta$ gets larger. A simple analytical framework is derived to take account of the self-generated pressure anisotropy and pressure gradient in the force-balance around the diffusion region, explaining the varying trend of key quantities and reconnection rates in these simulations with different $beta$. The predicted scaling of the normalized reconnection rate is $simeq mathcal{O}(0.1/sqrt{beta_{i0}})$ in the high $beta$ limit, where $beta_{i0}$ is the ion $beta$ of the inflow plasma.

قيم البحث

اقرأ أيضاً

A prediction of the steady-state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath) side. The prediction is within a factor of two of the widely examined asymmetric reconnection model [Cassak and Shay, Phys. Plasmas 14, 102114, 2007] in the collisionless limit, and they scale the same over a wide parameter regime. The previous model had the effective aspect ratio of the diffusion region as a free parameter, which simulations and observations suggest is on the order of 0.1, but the present model has no free parameters. In conjunction with the symmetric case [Liu et al., Phys. Rev. Lett. 118, 085101, 2017], this work further suggests that this nearly universal number 0.1, essentially the normalized fast reconnection rate, is a geometrical factor arising from maximizing the reconnection rate within magnetohydrodynamic (MHD)-scale constraints.
During magnetically dominated relativistic reconnection, inflowing plasma depletes the initial relativistic pressure at the x-line and collisionless plasma heating inside the diffusion region is insufficient to overcome this loss. The resulting press ure drop causes a collapse at the x-line, essentially a localization mechanism of the diffusion region necessary for fast reconnection. The extension of this low-pressure region further explains the bursty nature of anti-parallel reconnection because a once opened outflow exhaust can also collapse, which repeatedly triggers secondary tearing islands. However, a stable single x-line reconnection can be achieved when an external guide field exists, since the reconnecting magnetic field component rotates out of the reconnection plane at outflows, providing additional magnetic pressure to sustain the opened exhausts.
A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $sim 0.3$ even when the local rate goes up to $sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.
Works of D. Tsiklauri, T. Haruki, Phys. of Plasmas, 15, 102902 (2008) and D. Tsiklauri and T. Haruki, Phys. of Plasmas, 14, 112905, (2007) are extended by inclusion of the out-of-plane magnetic (guide) field. In particular, magnetic reconnection duri ng collisionless, stressed $X$-point collapse for varying out-of-plane guide-fields is studied using a kinetic, 2.5D, fully electromagnetic, relativistic particle-in-cell numerical code. Cases for both open and closed boundary conditions are investigated, where magnetic flux and particles are lost and conserved respectively. It is found that reconnection rates and out-of-plane currents in the $X$-point increase more rapidly and peak sooner in the closed boundary case, but higher values are reached in the open boundary case. The normalized reconnection rate is fast: 0.10-0.25. In the open boundary case an increase of guide-field yields later onsets in the reconnection peak rates, while in the closed boundary case initial peak rates occur sooner but are suppressed. The reconnection current increases for low guide-fields but then decreases similarly. In the open boundary case, for guide-fields of the order of the in-plane magnetic field, the generation of electron vortices occurs. Possible causes of the vortex generation, based on the flow of particles in the diffusion region and localized plasma heating, are discussed. Before peak reconnection onset, oscillations in the out-of-plane electric field at the $X$-point are found, ranging in frequency from approximately 1 to 2 $omega_{pe}$ and coinciding with oscillatory reconnection. These oscillations are found to be part of a larger wave pattern. Mapping the out-of-plane electric field over time and applying 2D Fourier transforms reveals that the waves predominantly correspond to the ordinary mode and may correspond to observable radio waves such as solar radio burst fine structure spikes.
Particle dynamics in the electron current layer in collisionless magnetic reconnection is investigated by using a particle-in-cell simulation. Electron motion and velocity distribution functions are studied by tracking self-consistent trajectories. N ew classes of electron orbits are discovered: figure-eight-shaped regular orbits inside the electron jet, noncrossing regular orbits on the jet flanks, noncrossing Speiser orbits, and nongyrotropic electrons in the downstream of the jet termination region. Properties of a super-Alfv{e}nic outflow jet are attributed to an ensemble of electrons traveling through Speiser orbits. Noncrossing orbits are mediated by the polarization electric field near the electron current layer. The noncrossing electrons are found to be non-negligible in number density. The impact of these new orbits to electron mixing, spatial distribution of energetic electrons, and observational signatures, is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا