ﻻ يوجد ملخص باللغة العربية
During magnetically dominated relativistic reconnection, inflowing plasma depletes the initial relativistic pressure at the x-line and collisionless plasma heating inside the diffusion region is insufficient to overcome this loss. The resulting pressure drop causes a collapse at the x-line, essentially a localization mechanism of the diffusion region necessary for fast reconnection. The extension of this low-pressure region further explains the bursty nature of anti-parallel reconnection because a once opened outflow exhaust can also collapse, which repeatedly triggers secondary tearing islands. However, a stable single x-line reconnection can be achieved when an external guide field exists, since the reconnecting magnetic field component rotates out of the reconnection plane at outflows, providing additional magnetic pressure to sustain the opened exhausts.
We present large scale 3D particle-in-cell (PIC) simulations to examine particle energization in magnetic reconnection of relativistic electron-positron (pair) plasmas. The initial configuration is set up as a relativistic Harris equilibrium without
Modeling collisionless magnetic reconnection rate is an outstanding challenge in basic plasma physics research. While the seemingly universal rate of an order $mathcal{O}(0.1)$ is often reported in the low-$beta$ regime, it is not clear how reconnect
A prediction of the steady-state reconnection electric field in asymmetric reconnection is obtained by maximizing the reconnection rate as a function of the opening angle made by the upstream magnetic field on the weak magnetic field (magnetosheath)
Magnetic reconnection in strongly magnetized astrophysical plasma environments is believed to be the primary process for fast energy release and particle energization. Currently there is strong interest in relativistic magnetic reconnection, in that
Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream m