ﻻ يوجد ملخص باللغة العربية
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field, using quantum mechanics (QM) and quantum electrodynamics (QED) applied to coupled harmonic Drude oscillators. Our focus is to understand the interplay between dispersion interactions and field-induced electrostatics and polarization in both retarded and non-retarded regimes. We present an exact solution for two coupled oscillators using QM and Rayleigh-Schrodinger perturbation theory, demonstrating that the external field controls the strength of different intermolecular interactions and relative orientations of the molecules. In the retarded regime described by QED and rationalized by stochastic electrodynamics, our analysis shows that field-induced electrostatics and polarization terms remain unchanged (in isotropic and homogeneous vacuum) compared to the non-retarded QM description, in contrast to a recent work. Our framework combining four complementary theoretical approaches paves the way to a systematic description and enhanced understanding of molecular interactions under the combined action of external and vacuum fields.
A concept of kinetic energy in quantum mechanics is analyzed. Kinetic energy is a non-zero positive value in many cases of bound states, when a wave function is a real-valued one and there are no visible motion and flux. This can be understood, using
Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, t
A concept of Kinetic Energy in Quantum Mechanics is analyzed. Kinetic Energy is not zero in many cases where there are no motion and flux. This paradox can be understood, using expansion of the wave function in Fourier integral, that is on the basis of virtual plane waves.
We employ various quantum-mechanical approaches for studying the impact of electric fields on both nonretarded and retarded noncovalent interactions between atoms or molecules. To this end, we apply perturbative and non-perturbative methods within th
A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of va