ﻻ يوجد ملخص باللغة العربية
Retarded electromagnetic potentials are derived from Maxwells equations and the Lorenz condition. The difference found between these potentials and the conventional Li{e}nard-Wiechert ones is explained by neglect, for the latter, of the motion-dependence of the effective charge density. The corresponding retarded fields of a point-like charge in arbitary motion are compared with those given by the formulae of Heaviside, Feynman, Jefimenko and other authors. The fields of an accelerated charge given by the Feynman are the same as those derived from the Li{e}nard-Wiechert potentials but not those given by the Jefimenko formulae. A mathematical error concerning partial space and time derivatives in the derivation of the Jefimenko equations is pointed out.
We employ various quantum-mechanical approaches for studying the impact of electric fields on both nonretarded and retarded noncovalent interactions between atoms or molecules. To this end, we apply perturbative and non-perturbative methods within th
The problem of spontaneous radiation of the electron bunch grazing into a charged metallic surface with randomly distributed needle shaped asperities is considered. Distances between two neighboring asperities have been described by gamma distributio
Maxwells electrodynamics postulates the finite propagation speed of electromagnetic (EM) action and the notion of EM fields, but it only satisfies the requirement of the covariance in Minkowski metric (Lorentz invariance). Darwins force law of moving
An approach is outline to constructing an optical potential that includes the effects of antisymmetry and target recoil. it is based on the retarded Greens function, which could make it a better starting point for applications to direct nuclear react
We study the restricted motion of an electric charge in a spherical surface in the field of a magnetic dipole. This is the classical non-relativistic Stoermer problem within a sphere, with the dipole in its centre. We start from a Lagrangian approach