ترغب بنشر مسار تعليمي؟ اضغط هنا

Relativistic density-functional theory based on effective quantum electrodynamics

139   0   0.0 ( 0 )
 نشر من قبل Julien Toulouse
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Julien Toulouse




اسأل ChatGPT حول البحث

A relativistic density-functional theory based on a Fock-space effective quantum-electrodynamics (QED) Hamiltonian using the Coulomb or Coulomb-Breit two-particle interaction is developed. This effective QED theory properly includes the effects of vacuum polarization through the creation of electron-positron pairs but does not include explicitly the photon degrees of freedom. It is thus a more tractable alternative to full QED for atomic and molecular calculations. Using the constrained-search formalism, a Kohn-Sham scheme is formulated in a quite similar way to non-relativistic density-functional theory, and some exact properties of the involved density functionals are studied, namely charge-conjugation symmetry and uniform coordinate scaling. The usual no-pair Kohn-Sham scheme is obtained as a well-defined approximation to this relativistic density-functional theory.



قيم البحث

اقرأ أيضاً

117 - Emil Proynov , Jing Kong 2021
The charge delocalization error, besides nondynamic correlation, has been a major challenge to density functional theory. Contemporary functionals undershoot the dissociation of symmetric charged dimers A2+, a simple but stringent test, predict a spu rious barrier and improperly delocalize charges for charged molecular clusters. We extend a functional designed for nondynamic correlation to treat the charge delocalization error by modifying the nondynamic correlation for parallel spins. The modified functional eliminates those problems and reduces the multielectron self-interaction error. Furthermore, its results are the closest to those of CCSD(T) in the whole range of the dissociation compared with contemporary functionals. It correctly localizes the net positive charge in (CH4)n+ clusters and predicts a nearly constant ionization potential as a result. Testing of the SIE4x4 set shows that the new functional outperforms a wide variety of functionals assessed for this set in the literature. Overall, we show the feasibility of treating charge delocalization together with nondynamic correlation.
Recently a novel approach to find approximate exchange-correlation functionals in density-functional theory (DFT) was presented (U. Mordovina et. al., JCTC 15, 5209 (2019)), which relies on approximations to the interacting wave function using densit y-matrix embedding theory (DMET). This approximate interacting wave function is constructed by using a projection determined by an iterative procedure that makes parts of the reduced density matrix of an auxiliary system the same as the approximate interacting density matrix. If only the diagonal of both systems are connected this leads to an approximation of the interacting-to-non-interacting mapping of the Kohn-Sham approach to DFT. Yet other choices are possible and allow to connect DMET with other DFTs such as kinetic-energy DFT or reduced density-matrix functional theory. In this work we give a detailed review of the basics of the DMET procedure from a DFT perspective and show how both approaches can be used to supplement each other. We do so explicitly for the case of a one-dimensional lattice system, as this is the simplest setting where we can apply DMET and the one that was originally presented. Among others we highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections in DMET and how to construct approximations for different DFTs using DMET inspired projections. Such alternative approximation strategies become especially important for DFTs that are based on non-linearly coupled observables such as kinetic-energy DFT, where the Kohn-Sham fields are no longer simply obtainable by functional differentiation of an energy expression, or for reduced density-matrix functional theories, where a straightforward Kohn-Sham construction is not feasible.
Linear-response time-dependent (TD) density-functional theory (DFT) has been implemented in the pseudopotential wavelet-based electronic structure program BigDFT and results are compared against those obtained with the all-electron Gaussian-type orbi tal program deMon2k for the calculation of electronic absorption spectra of N2 using the TD local density approximation (LDA). The two programs give comparable excitation energies and absorption spectra once suitably extensive basis sets are used. Convergence of LDA density orbitals and orbital energies to the basis-set limit is significantly faster for BigDFT than for deMon2k. However the number of virtual orbitals used in TD-DFT calculations is a parameter in BigDFT, while all virtual orbitals are included in TD-DFT calculations in deMon2k. As a reality check, we report the x-ray crystal structure and the measured and calculated absorption spectrum (excitation energies and oscillator strengths) of the small organic molecule N-cyclohexyl-2-(4-methoxyphenyl)imidazo[1,2-a]pyridin-3-amine.
The time-dependent density functional theory (TDDFT) has been broadly used to investigate the excited-state properties of various molecular systems. However, the current TDDFT heavily relies on outcomes from the corresponding ground-state density fun ctional theory (DFT) calculations which may be prone to errors due to the lack of proper treatment in the non-dynamical correlation effects. Recently, thermally-assisted-occupation density functional theory (TAO-DFT) [J.-D. Chai, textit{J. Chem. Phys.} textbf{136}, 154104 (2012)], a DFT with fractional orbital occupations, was proposed, explicitly incorporating the non-dynamical correlation effects in the ground-state calculations with low computational complexity. In this work, we develop time-dependent (TD) TAO-DFT, which is a time-dependent, linear-response theory for excited states within the framework of TAO-DFT. With tests on the excited states of H$_{2}$, the first triplet excited state ($1^3Sigma_u^+$) was described well, with non-imaginary excitation energies. TDTAO-DFT also yields zero singlet-triplet gap in the dissociation limit, for the ground singlet ($1^1Sigma_g^+$) and the first triplet state ($1^3Sigma_u^+$). In addition, as compared to traditional TDDFT, the overall excited-state potential energy surfaces obtained from TDTAO-DFT are generally improved and better agree with results from the equation-of-motion coupled-cluster singles and doubles (EOM-CCSD).
Forty-five years after the point de depart [1] of density functional theory, its applications in chemistry and the study of electronic structures keep steadily growing. However, the precise form of the energy functional in terms of the electron densi ty still eludes us -- and possibly will do so forever [2]. In what follows we examine a formulation in the same spirit with phase space variables. The validity of Hohenberg-Kohn-Levy-type theorems on phase space is recalled. We study the representability problem for reduced Wigner functions, and proceed to analyze properties of the new functional. Along the way, new results on states in the phase-space formalism of quantum mechanics are established. Natural Wigner orbital theory is developed in depth, with the final aim of constructing accurate correlation-exchange functionals on phase space. A new proof of the overbinding property of the Mueller functional is given. This exact theory supplies its home at long last to that illustrious ancestor, the Thomas-Fermi model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا