ترغب بنشر مسار تعليمي؟ اضغط هنا

A transmission spectrum of the planet candidate WD 1856+534 b and a lower limit to its mass

65   0   0.0 ( 0 )
 نشر من قبل Roi Alonso
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The cool white dwarf WD 1856+534 was found to be transited by a Jupiter-sized object with a mass at or below 14 M$_{rm{Jup}}$. We used the GTC telescope to obtain and analyse photometry and low resolution spectroscopy of six transits of WD 1856+534 b, with the intention to derive the slope of the transmission spectrum, towards an eventual detection of Rayleigh scattering of the particles in its atmosphere. Such a slope, assuming a cloud-free atmosphere dominated by Rayleigh scattering, could be translated into an estimation of the mass of WD 1856+534 b. However, the resultant transmission spectrum is essentially flat, and therefore permits only the determination of lower mass limits of 2.4 M$_{rm{Jup}}$ at the 2-$sigma$ level, or 1.6 M$_{rm{Jup}}$ at 3-$sigma$. These limits have implications for some of the proposed formation scenarios for the object. We elaborate on the potential effects of clouds and hazes in our estimations, based on previous studies of Jupiter and Titan. In addition, we detected an H$alpha$ absorption feature in the combined spectrum of the host white dwarf, that leads to the assignation of a DA classification and allows derivation of an independent set of atmospheric parameters. Furthermore, the epochs of five transits were measured with sub-second precision, which demonstrates that additional objects more massive than $approx$5 M$_{rm{Jup}}$ and with periods longer than $O(100)$ days could be detected through the light travel time effect

قيم البحث

اقرأ أيضاً

The discovery of a giant planet candidate orbiting the white dwarf WD 1856+534 with an orbital period of 1.4 d poses the questions of how the planet reached its current position. We here reconstruct the evolutionary history of the system assuming com mon envelope evolution as the main mechanism that brought the planet to its current position. We find that common envelope evolution can explain the present configuration if it was initiated when the host star was on the AGB, the separation of the planet at the onset of mass transfer was in the range 1.69-2.35 au, and if in addition to the orbital energy of the surviving planet either recombination energy stored in the envelope or another source of additional energy contributed to expelling the envelope. We also discuss the evolution of the planet prior to and following common envelope evolution. Finally, we find that if the system formed through common envelope evolution, its total age is in agreement with its membership to the Galactic thin disc. We therefore conclude that common envelope evolution is at least as likely as alternative formation scenarios previously suggested such as planet-planet scattering or Kozai-Lidov oscillations.
We report the detection of a transiting hot Neptune exoplanet orbiting TOI-824 (SCR J1448-5735), a nearby (d = 64 pc) K4V star, using data from the textit{Transiting Exoplanet Survey Satellite} (TESS). The newly discovered planet has a radius, $R_{rm {p}}$ = 2.93 $pm$ 0.20 R$_{oplus}$, and an orbital period of 1.393 days. Radial velocity measurements using the Planet Finder Spectrograph (PFS) and the High Accuracy Radial velocity Planet Searcher (HARPS) spectrograph confirm the existence of the planet and we estimate its mass to be $M_{rm{p}}$ = 18.47 $pm$ 1.84 M$_{oplus}$. The planets mean density is $rho_{rm{p}}$ = 4.03$^{+0.98}_{-0.78}$ g cm$^{-3}$ making it more than twice as dense as Neptune. TOI-824 bs high equilibrium temperature makes the planet likely to have a cloud free atmosphere, and thus an excellent candidate for follow up atmospheric studies. The detectability of TOI-824 bs atmosphere from both ground and space is promising and could lead to the detailed characterization of the most irradiated, small planet at the edge of the hot Neptune desert that has retained its atmosphere to date.
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th e star, but more distant planets can survive this phase and remain in orbit around the white dwarf. Some white dwarfs show evidence for rocky material floating in their atmospheres, in warm debris disks, or orbiting very closely, which has been interpreted as the debris of rocky planets that were scattered inward and tidally disrupted. Recently, the discovery of a gaseous debris disk with a composition similar to ice giant planets demonstrated that massive planets might also find their way into tight orbits around white dwarfs, but it is unclear whether the planets can survive the journey. So far, the detection of intact planets in close orbits around white dwarfs has remained elusive. Here, we report the discovery of a giant planet candidate transiting the white dwarf WD 1856+534 (TIC 267574918) every 1.4 days. The planet candidate is roughly the same size as Jupiter and is no more than 14 times as massive (with 95% confidence). Other cases of white dwarfs with close brown dwarf or stellar companions are explained as the consequence of common-envelope evolution, wherein the original orbit is enveloped during the red-giant phase and shrinks due to friction. In this case, though, the low mass and relatively long orbital period of the planet candidate make common-envelope evolution less likely. Instead, the WD 1856+534 system seems to demonstrate that giant planets can be scattered into tight orbits without being tidally disrupted, and motivates searches for smaller transiting planets around white dwarfs.
We present an atmospheric transmission spectrum of the ultra-hot Jupiter WASP-76 b by analyzing archival data obtained with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The dataset spans three transits, t wo with a wavelength coverage between 2900 and 5700 Armstrong, and the third one between 5250 and 10300 Armstrong. From the one-dimensional, time dependent spectra we constructed white and chromatic light curves, the latter with typical integration band widths of ~200 Armstrong. We computed the wavelength dependent planet-to-star radii ratios taking into consideration WASP-76s companion. The resulting transmission spectrum of WASP-76 b is dominated by a spectral slope of increasing opacity towards shorter wavelengths of amplitude of about three scale heights under the assumption of planetary equilibrium temperature. If the slope is caused by Rayleigh scattering, we derive a lower limit to the temperature of ~870 K. Following-up on previous detection of atomic sodium derived from high resolution spectra, we re-analyzed HST data using narrower bands centered around sodium. From an atmospheric retrieval of this transmission spectrum, we report evidence of sodium at 2.9-sigma significance. In this case, the retrieved temperature at the top of the atmosphere (10-5 bar) is 2300 +412-392 K. We also find marginal evidence for titanium hydride. However, additional high resolution ground-based data are required to confirm this discovery.
The exoplanet HD 118203 b, orbiting a bright (V = 8.05) host star, was discovered using the radial velocity method by da Silva et al. (2006), but was not previously known to transit. TESS photometry has revealed that this planet transits its host sta r. Five planetary transits were observed by TESS, allowing us to measure the radius of the planet to be $1.133 pm 0.031 R_J$, and to calculate the planet mass to be $2.173 pm 0.078 M_J$. The host star is slightly evolved with an effective temperature of $T_{rm eff} = 5692 pm 83$ K and a surface gravity of ${rm log}(g) = 3.891 pm 0.019$. With an orbital period of $6.134980 pm 0.000038$ days and an eccentricity of $0.316 pm 0.021$, the planet occupies a transitional regime between circularized hot Jupiters and more dynamically active planets at longer orbital periods. The host star is among the ten brightest known to have transiting giant planets, providing opportunities for both planetary atmospheric and asteroseismic studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا