ﻻ يوجد ملخص باللغة العربية
The discovery of a giant planet candidate orbiting the white dwarf WD 1856+534 with an orbital period of 1.4 d poses the questions of how the planet reached its current position. We here reconstruct the evolutionary history of the system assuming common envelope evolution as the main mechanism that brought the planet to its current position. We find that common envelope evolution can explain the present configuration if it was initiated when the host star was on the AGB, the separation of the planet at the onset of mass transfer was in the range 1.69-2.35 au, and if in addition to the orbital energy of the surviving planet either recombination energy stored in the envelope or another source of additional energy contributed to expelling the envelope. We also discuss the evolution of the planet prior to and following common envelope evolution. Finally, we find that if the system formed through common envelope evolution, its total age is in agreement with its membership to the Galactic thin disc. We therefore conclude that common envelope evolution is at least as likely as alternative formation scenarios previously suggested such as planet-planet scattering or Kozai-Lidov oscillations.
Astronomers have discovered thousands of planets outside the solar system, most of which orbit stars that will eventually evolve into red giants and then into white dwarfs. During the red giant phase, any close-orbiting planets will be engulfed by th
The cool white dwarf WD 1856+534 was found to be transited by a Jupiter-sized object with a mass at or below 14 M$_{rm{Jup}}$. We used the GTC telescope to obtain and analyse photometry and low resolution spectroscopy of six transits of WD 1856+534 b
The detection of a dust disc around G29-38 and transits from debris orbiting WD1145+017 confirmed that the photospheric trace metals found in many white dwarfs arise from the accretion of tidally disrupted planetesimals. The composition of these plan
White dwarfs are the end state of most stars, including the Sun, after they exhaust their nuclear fuel. Between 1/4 and 1/2 of white dwarfs have elements heavier than helium in their atmospheres, even though these elements should rapidly settle into
We present TOI-1259Ab, a 1.0 Rjup gas giant planet transiting a 0.71 Rsun K-dwarf on a 3.48 day orbit. The system also contains a bound white dwarf companion TOI-1259B with a projected distance of approximately 1600 AU from the planet host. Transits