ﻻ يوجد ملخص باللغة العربية
Since many real world networks are evolving over time, such as social networks and user-item networks, there are increasing research efforts on dynamic network embedding in recent years. They learn node representations from a sequence of evolving graphs but not only the latest network, for preserving both structural and temporal information from the dynamic networks. Due to the lack of comprehensive investigation of them, we give a survey of dynamic network embedding in this paper. Our survey inspects the data model, representation learning technique, evaluation and application of current related works and derives common patterns from them. Specifically, we present two basic data models, namely, discrete model and continuous model for dynamic networks. Correspondingly, we summarize two major categories of dynamic network embedding techniques, namely, structural-first and temporal-first that are adopted by most related works. Then we build a taxonomy that refines the category hierarchy by typical learning models. The popular experimental data sets and applications are also summarized. Lastly, we have a discussion of several distinct research topics in dynamic network embedding.
Dynamic Network Embedding (DNE) has recently attracted considerable attention due to the advantage of network embedding in various applications and the dynamic nature of many real-world networks. For dynamic networks, the degree of changes, i.e., def
Recently, Network Embedding (NE) has become one of the most attractive research topics in machine learning and data mining. NE approaches have achieved promising performance in various of graph mining tasks including link prediction and node clusteri
Learning low-dimensional topological representation of a network in dynamic environments is attracting much attention due to the time-evolving nature of many real-world networks. The main and common objective of Dynamic Network Embedding (DNE) is to
The real-world networks often compose of different types of nodes and edges with rich semantics, widely known as heterogeneous information network (HIN). Heterogeneous network embedding aims to embed nodes into low-dimensional vectors which capture r
Learning topological representation of a network in dynamic environments has recently attracted considerable attention due to the time-evolving nature of many real-world networks i.e. nodes/links might be added/removed as time goes on. Dynamic networ