ﻻ يوجد ملخص باللغة العربية
Learning topological representation of a network in dynamic environments has recently attracted considerable attention due to the time-evolving nature of many real-world networks i.e. nodes/links might be added/removed as time goes on. Dynamic network embedding aims to learn low dimensional embeddings for unseen and seen nodes by using any currently available snapshots of a dynamic network. For seen nodes, the existing methods either treat them equally important or focus on the $k$ most affected nodes at each time step. However, the former solution is time-consuming, and the later solution that relies on incoming changes may lose the global topology---an important feature for downstream tasks. To address these challenges, we propose a dynamic network embedding method called DynWalks, which includes two key components: 1) An online network embedding framework that can dynamically and efficiently learn embeddings based on the selected nodes; 2) A novel online node selecting scheme that offers the flexible choices to balance global topology and recent changes, as well as to fulfill the real-time constraint if needed. The empirical studies on six real-world dynamic networks under three different slicing ways show that DynWalks significantly outperforms the state-of-the-art methods in graph reconstruction tasks, and obtains comparable results in link prediction tasks. Furthermore, the wall-clock time and complexity analysis demonstrate its excellent time and space efficiency. The source code of DynWalks is available at https://github.com/houchengbin/DynWalks
Learning low-dimensional topological representation of a network in dynamic environments is attracting much attention due to the time-evolving nature of many real-world networks. The main and common objective of Dynamic Network Embedding (DNE) is to
Since many real world networks are evolving over time, such as social networks and user-item networks, there are increasing research efforts on dynamic network embedding in recent years. They learn node representations from a sequence of evolving gra
Networks such as social networks, airplane networks, and citation networks are ubiquitous. The adjacency matrix is often adopted to represent a network, which is usually high dimensional and sparse. However, to apply advanced machine learning algorit
Dynamic Network Embedding (DNE) has recently attracted considerable attention due to the advantage of network embedding in various applications and the dynamic nature of many real-world networks. For dynamic networks, the degree of changes, i.e., def
Signed networks are mathematical structures that encode positive and negative relations between entities such as friend/foe or trust/distrust. Recently, several papers studied the construction of useful low-dimensional representations (embeddings) of