ﻻ يوجد ملخص باللغة العربية
In this paper, we address the problem of direction finding using coprime array, which is one of the most preferred sparse array configurations. Motivated by the fact that non-uniform element spacing hinders full utilization of the underlying information in the receive signals, we propose a direction-of-arrival (DoA) estimation algorithm based on low-rank reconstruction of the Toeplitz covariance matrix. The atomic-norm representation of the measurements from the interpolated virtual array is considered, and the equivalent dual-variable rank minimization problem is formulated and solved using a cyclic optimization approach. The recovered covariance matrix enables the application of conventional subspace-based spectral estimation algorithms, such as MUSIC, to achieve enhanced DoA estimation performance. The estimation performance of the proposed approach, in terms of the degrees-of-freedom and spatial resolution, is examined. We also show the superiority of the proposed method over the competitive approaches in the root-mean-square error sense.
Reducing cost and power consumption while maintaining high network access capability is a key physical-layer requirement of massive Internet of Things (mIoT) networks. Deploying a hybrid array is a cost- and energy-efficient way to meet the requireme
In this paper we present FRIDA---an algorithm for estimating directions of arrival of multiple wideband sound sources. FRIDA combines multi-band information coherently and achieves state-of-the-art resolution at extremely low signal-to-noise ratios.
In this work, we propose an alternating low-rank decomposition (ALRD) approach and novel subspace algorithms for direction-of-arrival (DOA) estimation. In the ALRD scheme, the decomposition matrix for rank reduction is composed of a set of basis vect
Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array r
The near-field effect of short-range multiple-input multiple-output (MIMO) systems imposes many challenges on direction-of-arrival (DoA) estimation. Most conventional scenarios assume that the far-field planar wavefronts hold. In this paper, we inves