ﻻ يوجد ملخص باللغة العربية
Reducing cost and power consumption while maintaining high network access capability is a key physical-layer requirement of massive Internet of Things (mIoT) networks. Deploying a hybrid array is a cost- and energy-efficient way to meet the requirement, but would penalize system degree of freedom (DoF) and channel estimation accuracy. This is because signals from multiple antennas are combined by a radio frequency (RF) network of the hybrid array. This paper presents a novel hybrid uniform circular cylindrical array (UCyA) for mIoT networks. We design a nested hybrid beamforming structure based on sparse array techniques and propose the corresponding channel estimation method based on the second-order channel statistics. As a result, only a small number of RF chains are required to preserve the DoF of the UCyA. We also propose a new tensor-based two-dimensional (2-D) direction-of-arrival (DoA) estimation algorithm tailored for the proposed hybrid array. The algorithm suppresses the noise components in all tensor modes and operates on the signal data model directly, hence improving estimation accuracy with an affordable computational complexity. Corroborated by a Cramer-Rao lower bound (CRLB) analysis, simulation results show that the proposed hybrid UCyA array and the DoA estimation algorithm can accurately estimate the 2-D DoAs of a large number of IoT devices.
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two
The direction of arrival (DOA) estimation in array signal processing is an important research area. The effectiveness of the direction of arrival greatly determines the performance of multi-input multi-output (MIMO) antenna systems. The multiple sign
In this paper, we address the problem of direction finding using coprime array, which is one of the most preferred sparse array configurations. Motivated by the fact that non-uniform element spacing hinders full utilization of the underlying informat
Channel estimation is challenging for hybrid millimeter wave (mmWave) large-scale antenna arrays which are promising in 5G/B5G applications. The challenges are associated with angular resolution losses resulting from hybrid front-ends, beam squinting
Both the power-dissipation and cost of massive multiple-input multiple-output (mMIMO) systems may be substantially reduced by using low-resolution analog-to-digital converters (LADCs) at the receivers. However, both the coarse quantization of LADCs a