ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Estimation of DOA and Frequency with Sub-Nyquist Sampling in a Binary Array Radar System

85   0   0.0 ( 0 )
 نشر من قبل Zhan Zhang
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array radars at the sub-Nyquist rates are considered in this paper. We propose a new sub-Nyquist array radar architecture (a binary array radar separately connected to a multi-coset structure with M branches) and an efficient joint estimation algorithm which can match frequencies up with corresponding DOAs. We further come up with a delay pattern augmenting method, by which the capability of the number of identifiable signals can increase from M-1 to Q-1 (Q is extended degrees of freedom). We further conclude that the minimum total sampling rate 2MB is sufficient to identify $ {K leq Q-1}$ narrow-band signals of maximum bandwidth $B$ inside. The effectiveness and performance of the estimation algorithm together with the augmenting method have been verified by simulations.



قيم البحث

اقرأ أيضاً

85 - Jehyuk Jang , Sanghun Im , 2017
A modulated wideband converter (MWC) has been introduced as a sub-Nyquist sampler that exploits a set of fast alternating pseudo random (PR) signals. Through parallel sampling branches, an MWC compresses a multiband spectrum by mixing it with PR sign als in the time domain, and acquires its sub-Nyquist samples. Previously, the ratio of compression was fully dependent on the specifications of PR signals. That is, to further reduce the sampling rate without information loss, faster and longer-period PR signals were needed. However, the implementation of such PR signal generators results in high power consumption and large fabrication area. In this paper, we propose a novel aliased modulated wideband converter (AMWC), which can further reduce the sampling rate of MWC with fixed PR signals. The main idea is to induce intentional signal aliasing at the analog-to-digital converter (ADC). In addition to the first spectral compression by the signal mixer, the intentional aliasing compresses the mixed spectrum once again. We demonstrate that AMWC reduces the number of sampling branches and the rate of ADC for lossless sub-Nyquist sampling without needing to upgrade the speed or period of PR signals. Conversely, for a given fixed number of sampling branches and sampling rate, AMWC improves the performance of signal reconstruction.
Channel and frequency offset estimation is a classic topic with a large body of prior work using mainly maximum likelihood (ML) approach together with Cramer-Rao Lower bounds (CRLB) analysis. We provide the maximum a posteriori (MAP) estimation solut ion which is particularly useful for for tracking where previous estimation can be used as prior knowledge. Unlike the ML cases, the corresponding Bayesian Cramer-Rao Lower bound (BCRLB) shows clear relation with parameters and a low complexity algorithm achieves the BCRLB in almost all SNR range. We allow the time invariant channel within a packet to have arbitrary correlation and mean. The estimation is based on pilot/training signals. An unexpected result is that the joint MAP estimation is equivalent to an individual MAP estimation of the frequency offset first, again different from the ML results. We provide insight on the pilot/training signal design based on the BCRLB. Unlike past algorithms that trade performance and/or complexity for the accommodation of time varying channels, the MAP solution provides a different route for dealing with time variation. Within a short enough (segment of) packet where the channel and CFO are approximately time invariant, the low complexity algorithm can be employed. Similar to belief propagation, the estimation of the previous (segment of) packet can serve as the prior knowledge for the next (segment of) packet.
In this paper, we consider the design of a multiple-input multiple-output (MIMO) transmitter which simultaneously functions as a MIMO radar and a base station for downlink multiuser communications. In addition to a power constraint, we require the co variance of the transmit waveform be equal to a given optimal covariance for MIMO radar, to guarantee the radar performance. With this constraint, we formulate and solve the signal-to-interference-plus-noise ratio (SINR) balancing problem for multiuser transmit beamforming via convex optimization. Considering that the interference cannot be completely eliminated with this constraint, we introduce dirty paper coding (DPC) to further cancel the interference, and formulate the SINR balancing and sum rate maximization problem in the DPC regime. Although both of the two problems are non-convex, we show that they can be reformulated to convex optimizations via the Lagrange and downlink-uplink duality. In addition, we propose gradient projection based algorithms to solve the equivalent dual problem of SINR balancing, in both transmit beamforming and DPC regimes. The simulation results demonstrate significant performance improvement of DPC over transmit beamforming, and also indicate that the degrees of freedom for the communication transmitter is restricted by the rank of the covariance.
Due to spectrum scarcity, the coexistence of radar and wireless communication has gained substantial research interest recently. Among many scenarios, the heterogeneouslydistributed joint radar-communication system is promising due to its flexibility and compatibility of existing architectures. In this paper, we focus on a heterogeneous radar and communication network (HRCN), which consists of various generic radars for multiple target tracking (MTT) and wireless communications for multiple users. We aim to improve the MTT performance and maintain good throughput levels for communication users by a well-designed resource allocation. The problem is formulated as a Bayesian Cramer-Rao bound (CRB) based minimization subjecting to resource budgets and throughput constraints. The formulated nonconvex problem is solved based on an alternating descent-ascent approach. Numerical results demonstrate the efficacy of the proposed allocation scheme for this heterogeneous network.
Dual-Functional Radar-Communication (DFRC) system is an essential and promising technique for beyond 5G. In this work, we propose a powerful and unified multi-antenna DFRC transmission framework, where an additional radar sequence is transmitted apar t from communication streams to enhance radar beampattern matching capability, and Rate-Splitting Multiple Access (RSMA) is adopted to better manage the interference. RSMA relies on multi-antenna Rate-Splitting (RS) with Successive Interference Cancellation (SIC) receivers, and the split and encoding of messages into common and private streams. We design the message split and the precoders of the radar sequence and communication streams to jointly maximize the Weighted Sum Rate (WSR) and minimize the radar beampattern approximation Mean Square Error (MSE) subject to the per antenna power constraint. An iterative algorithm based on Alternating Direction Method of Multipliers (ADMM) is developed to solve the problem. Numerical results first show that RSMA-assisted DFRC achieves a better tradeoff between WSR and beampattern approximation than Space-Division Multiple Access (SDMA)-assisted DFRC with or without radar sequence, and other simpler radar-communication strategies using orthogonal resources. We also show that the RSMA-assisted DFRC frameworks with and without radar sequence achieve the same tradeoff performance. This is because that the common stream is better exploited in the proposed framework. The common stream of RSMA fulfils the triple function of managing interference among communication users, managing interference between communication and radar, and beampattern approximation. Therefore, by enabling RSMA in DFRC, the system performance is enhanced while the system architecture is simplified since there is no need to use additional radar sequence and SIC. We conclude that RSMA is a more powerful multiple access for DFRC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا