ﻻ يوجد ملخص باللغة العربية
The list Ramsey number $R_{ell}(H,k)$, recently introduced by Alon, Bucic, Kalvari, Kuperwasser, and Szabo, is a list-coloring variant of the classical Ramsey number. They showed that if $H$ is a fixed $r$-uniform hypergraph that is not $r$-partite and the number of colors $k$ goes to infinity, $e^{Omega(sqrt{k})} le R_{ell} (H,k) le e^{O(k)}$. We prove that $R_{ell}(H,k) = e^{Theta(k)}$ if and only if $H$ is not $r$-partite.
The multicolor Ramsey number problem asks, for each pair of natural numbers $ell$ and $t$, for the largest $ell$-coloring of a complete graph with no monochromatic clique of size $t$. Recent works of Conlon-Ferber and Wigderson have improved the long
Given a positive integer $ r $, the $ r $-color size-Ramsey number of a graph $ H $, denoted by $ hat{R}(H, r) $, is the smallest integer $ m $ for which there exists a graph $ G $ with $ m $ edges such that, in any edge coloring of $ G $ with $ r $
In this paper, we consider a variant of Ramsey numbers which we call complementary Ramsey numbers $bar{R}(m,t,s)$. We first establish their connections to pairs of Ramsey $(s,t)$-graphs. Using the classification of Ramsey $(s,t)$-graphs for small $s,
We prove that the number of integers in the interval [0,x] that are non-trivial Ramsey numbers r(k,n) (3 <= k <= n) has order of magnitude (x ln x)**(1/2).
Let $B_n^{(k)}$ be the book graph which consists of $n$ copies of $K_{k+1}$ all sharing a common $K_k$, and let $C_m$ be a cycle of length $m$. In this paper, we first determine the exact value of $r(B_n^{(2)}, C_m)$ for $frac{8}{9}n+112le mle lceilf