ترغب بنشر مسار تعليمي؟ اضغط هنا

Multicolor Size-Ramsey Number of Cycles

109   0   0.0 ( 0 )
 نشر من قبل Ramin Javadi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a positive integer $ r $, the $ r $-color size-Ramsey number of a graph $ H $, denoted by $ hat{R}(H, r) $, is the smallest integer $ m $ for which there exists a graph $ G $ with $ m $ edges such that, in any edge coloring of $ G $ with $ r $ colors, $G$ contains a monochromatic copy of $ H $. Haxell, Kohayakawa and L uczak showed that the size-Ramsey number of a cycle $ C_n $ is linear in $ n $ i.e. $ hat{R}(C_n, r) leq c_rn $, for some constant $ c_r $. Their proof, however, is based on the Szemeredis regularity lemma and so no specific constant $ c_r $ is known. Javadi, Khoeini, Omidi and Pokrovskiy gave an alternative proof for this result which avoids using of the regularity lemma. Indeed, they proved that if $ n $ is even, then $ c_r $ is exponential in $ r $ and if $ n $ is odd, then $ c_r $ is doubly exponential in $ r $. oindent In this paper, we improve the bound $c_r$ and prove that $c_r$ is polynomial in $r$ when $n$ is even and is exponential in $r$ when $n$ is odd. We also prove that in the latter case, it cannot be improved to a polynomial bound in $r$. More precisely, we prove that there are some positive constants $c_1,c_2$ such that for every even integer $n$, we have $c_1r^2nleq hat{R}(C_n,r)leq c_2r^{120}(log^2 r)n$ and for every odd integer $n$, we have $c_1 2^{r}n leq hat{R}(C_n, r)leq c_22^{16 r^2+2log r}n $.

قيم البحث

اقرأ أيضاً

For a graph $H$ and an integer $kge1$, the $k$-color Ramsey number $R_k(H)$ is the least integer $N$ such that every $k$-coloring of the edges of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $C_m$ denote the cycle on $mge4$ vert ices and let $Theta_m$ denote the family of graphs obtained from $C_m$ by adding an additional edge joining two non-consecutive vertices. Unlike Ramsey number of odd cycles, little is known about the general behavior of $R_k(C_{2n})$ except that $R_k(C_{2n})ge (n-1)k+n+k-1$ for all $kge2$ and $nge2$. In this paper, we study Ramsey number of even cycles with chords under Gallai colorings, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles. For an integer $kgeq 1$, the Gallai-Ramsey number $GR_k(H)$ of a graph $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. We prove that $GR_k(Theta_{2n})=(n-1)k+n+1$ for all $kgeq 2$ and $ngeq 3$. This implies that $GR_k(C_{2n})=(n-1)k+n+1$ all $kgeq 2$ and $ngeq 3$. Our result yields a unified proof for the Gallai-Ramsey number of all even cycles on at least four vertices.
A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles, and a Gallai $k$-coloring is a Gallai coloring that uses at most $k$ colors. For an integer $kgeq 1$, the Gallai-Ramsey number $GR_k(H)$ of a given graph $H$ is the least positive integer $N$ such that every Gallai $k$-coloring of the complete graph $K_N$ contains a monochromatic copy of $H$. Let $C_m$ denote the cycle on $mge4$ vertices and let $Theta_m$ denote the family of graphs obtained from $C_m$ by adding an additional edge joining two non-consecutive vertices. We prove that $GR_k(Theta_{2n+1})=ncdot 2^k+1$ for all $kgeq 1$ and $ngeq 3$. This implies that $GR_k(C_{2n+1})=ncdot 2^k+1$ all $kgeq 1$ and $ngeq 3$. Our result yields a unified proof for the Gallai-Ramsey number of all odd cycles on at least five vertices.
98 - Will Sawin 2021
The multicolor Ramsey number problem asks, for each pair of natural numbers $ell$ and $t$, for the largest $ell$-coloring of a complete graph with no monochromatic clique of size $t$. Recent works of Conlon-Ferber and Wigderson have improved the long standing lower bound for this problem. We make a further improvement by replacing an explicit graph appearing in their constructions by a random graph. Graphs useful for this construction are exactly those relevant for a problem of ErdH{o}s on graphs with no large cliques and few large independent sets. We also make some basic observations about this problem.
Given graphs $G$ and $H$ and a positive integer $q$ say that $G$ is $q$-Ramsey for $H$, denoted $Grightarrow (H)_q$, if every $q$-colouring of the edges of $G$ contains a monochromatic copy of $H$. The size-Ramsey number $hat{r}(H)$ of a graph $H$ is defined to be $hat{r}(H)=min{|E(G)|colon Grightarrow (H)_2}$. Answering a question of Conlon, we prove that, for every fixed $k$, we have $hat{r}(P_n^k)=O(n)$, where $P_n^k$ is the $k$-th power of the $n$-vertex path $P_n$ (i.e. , the graph with vertex set $V(P_n)$ and all edges ${u,v}$ such that the distance between $u$ and $v$ in $P_n$ is at most $k$). Our proof is probabilistic, but can also be made constructive.
The size-Ramsey number of a graph $F$ is the smallest number of edges in a graph $G$ with the Ramsey property for $F$, that is, with the property that any 2-colouring of the edges of $G$ contains a monochromatic copy of $F$. We prove that the size-Ra msey number of the grid graph on $ntimes n$ vertices is bounded from above by $n^{3+o(1)}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا