ترغب بنشر مسار تعليمي؟ اضغط هنا

PnG BERT: Augmented BERT on Phonemes and Graphemes for Neural TTS

193   0   0.0 ( 0 )
 نشر من قبل Ye Jia
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper introduces PnG BERT, a new encoder model for neural TTS. This model is augmented from the original BERT model, by taking both phoneme and grapheme representations of text as input, as well as the word-level alignment between them. It can be pre-trained on a large text corpus in a self-supervised manner, and fine-tuned in a TTS task. Experimental results show that a neural TTS model using a pre-trained PnG BERT as its encoder yields more natural prosody and more accurate pronunciation than a baseline model using only phoneme input with no pre-training. Subjective side-by-side preference evaluations show that raters have no statistically significant preference between the speech synthesized using a PnG BERT and ground truth recordings from professional speakers.



قيم البحث

اقرأ أيضاً

225 - Liping Chen , Yan Deng , Xi Wang 2021
This paper presents a speech BERT model to extract embedded prosody information in speech segments for improving the prosody of synthesized speech in neural text-to-speech (TTS). As a pre-trained model, it can learn prosody attributes from a large am ount of speech data, which can utilize more data than the original training data used by the target TTS. The embedding is extracted from the previous segment of a fixed length in the proposed BERT. The extracted embedding is then used together with the mel-spectrogram to predict the following segment in the TTS decoder. Experimental results obtained by the Transformer TTS show that the proposed BERT can extract fine-grained, segment-level prosody, which is complementary to utterance-level prosody to improve the final prosody of the TTS speech. The objective distortions measured on a single speaker TTS are reduced between the generated speech and original recordings. Subjective listening tests also show that the proposed approach is favorably preferred over the TTS without the BERT prosody embedding module, for both in-domain and out-of-domain applications. For Microsoft professional, single/multiple speakers and the LJ Speaker in the public database, subjective preference is similarly confirmed with the new BERT prosody embedding. TTS demo audio samples are in https://judy44chen.github.io/TTSSpeechBERT/.
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing ta sks. In this paper, we present results using fine-tuned GPT, GPT-2, and their combination for automatic speech recognition (ASR). Unlike unidirectional LM GPT and GPT-2, BERT is bidirectional whose direct product of the output probabilities is no longer a valid language prior probability. A conversion method is proposed to compute the correct language prior probability based on bidirectional LM outputs in a mathematically exact way. Experimental results on the widely used AMI and Switchboard ASR tasks showed that the combination of the fine-tuned GPT and GPT-2 outperformed the combination of three neural LMs with different architectures trained from scratch on the in-domain text by up to a 12% relative word error rate reduction (WERR). Furthermore, the proposed conversion for language prior probabilities enables BERT to receive an extra 3% relative WERR, and the combination of BERT, GPT and GPT-2 results in further improvements.
In recent years, we have seen a colossal effort in pre-training multilingual text encoders using large-scale corpora in many languages to facilitate cross-lingual transfer learning. However, due to typological differences across languages, the cross- lingual transfer is challenging. Nevertheless, language syntax, e.g., syntactic dependencies, can bridge the typological gap. Previous works have shown that pre-trained multilingual encoders, such as mBERT cite{devlin-etal-2019-bert}, capture language syntax, helping cross-lingual transfer. This work shows that explicitly providing language syntax and training mBERT using an auxiliary objective to encode the universal dependency tree structure helps cross-lingual transfer. We perform rigorous experiments on four NLP tasks, including text classification, question answering, named entity recognition, and task-oriented semantic parsing. The experiment results show that syntax-augmented mBERT improves cross-lingual transfer on popular benchmarks, such as PAWS-X and MLQA, by 1.4 and 1.6 points on average across all languages. In the emph{generalized} transfer setting, the performance boosted significantly, with 3.9 and 3.1 points on average in PAWS-X and MLQA.
When deploying a Chinese neural text-to-speech (TTS) synthesis system, one of the challenges is to synthesize Chinese utterances with English phrases or words embedded. This paper looks into the problem in the encoder-decoder framework when only mono lingual data from a target speaker is available. Specifically, we view the problem from two aspects: speaker consistency within an utterance and naturalness. We start the investigation with an Average Voice Model which is built from multi-speaker monolingual data, i.e. Mandarin and English data. On the basis of that, we look into speaker embedding for speaker consistency within an utterance and phoneme embedding for naturalness and intelligibility and study the choice of data for model training. We report the findings and discuss the challenges to build a mixed-lingual TTS system with only monolingual data.
Exploiting large pretrained models for various NMT tasks have gained a lot of visibility recently. In this work we study how BERT pretrained models could be exploited for supervised Neural Machine Translation. We compare various ways to integrate pre trained BERT model with NMT model and study the impact of the monolingual data used for BERT training on the final translation quality. We use WMT-14 English-German, IWSLT15 English-German and IWSLT14 English-Russian datasets for these experiments. In addition to standard task test set evaluation, we perform evaluation on out-of-domain test sets and noise injected test sets, in order to assess how BERT pretrained representations affect model robustness.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا