ترغب بنشر مسار تعليمي؟ اضغط هنا

On the use of BERT for Neural Machine Translation

254   0   0.0 ( 0 )
 نشر من قبل St\\'ephane Clinchant
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Exploiting large pretrained models for various NMT tasks have gained a lot of visibility recently. In this work we study how BERT pretrained models could be exploited for supervised Neural Machine Translation. We compare various ways to integrate pretrained BERT model with NMT model and study the impact of the monolingual data used for BERT training on the final translation quality. We use WMT-14 English-German, IWSLT15 English-German and IWSLT14 English-Russian datasets for these experiments. In addition to standard task test set evaluation, we perform evaluation on out-of-domain test sets and noise injected test sets, in order to assess how BERT pretrained representations affect model robustness.



قيم البحث

اقرأ أيضاً

GPT-2 and BERT demonstrate the effectiveness of using pre-trained language models (LMs) on various natural language processing tasks. However, LM fine-tuning often suffers from catastrophic forgetting when applied to resource-rich tasks. In this work , we introduce a concerted training framework (method) that is the key to integrate the pre-trained LMs to neural machine translation (NMT). Our proposed Cnmt consists of three techniques: a) asymptotic distillation to ensure that the NMT model can retain the previous pre-trained knowledge; b) a dynamic switching gate to avoid catastrophic forgetting of pre-trained knowledge; and c) a strategy to adjust the learning paces according to a scheduled policy. Our experiments in machine translation show method gains of up to 3 BLEU score on the WMT14 English-German language pair which even surpasses the previous state-of-the-art pre-training aided NMT by 1.4 BLEU score. While for the large WMT14 English-French task with 40 millions of sentence-pairs, our base model still significantly improves upon the state-of-the-art Transformer big model by more than 1 BLEU score.
206 - Jinhua Zhu , Yingce Xia , Lijun Wu 2020
The recently proposed BERT has shown great power on a variety of natural language understanding tasks, such as text classification, reading comprehension, etc. However, how to effectively apply BERT to neural machine translation (NMT) lacks enough ex ploration. While BERT is more commonly used as fine-tuning instead of contextual embedding for downstream language understanding tasks, in NMT, our preliminary exploration of using BERT as contextual embedding is better than using for fine-tuning. This motivates us to think how to better leverage BERT for NMT along this direction. We propose a new algorithm named BERT-fused model, in which we first use BERT to extract representations for an input sequence, and then the representations are fused with each layer of the encoder and decoder of the NMT model through attention mechanisms. We conduct experiments on supervised (including sentence-level and document-level translations), semi-supervised and unsupervised machine translation, and achieve state-of-the-art results on seven benchmark datasets. Our code is available at url{https://github.com/bert-nmt/bert-nmt}.
Leveraging the visual modality effectively for Neural Machine Translation (NMT) remains an open problem in computational linguistics. Recently, Caglayan et al. posit that the observed gains are limited mainly due to the very simple, short, repetitive sentences of the Multi30k dataset (the only multimodal MT dataset available at the time), which renders the source text sufficient for context. In this work, we further investigate this hypothesis on a new large scale multimodal Machine Translation (MMT) dataset, How2, which has 1.57 times longer mean sentence length than Multi30k and no repetition. We propose and evaluate three novel fusion techniques, each of which is designed to ensure the utilization of visual context at different stages of the Sequence-to-Sequence transduction pipeline, even under full linguistic context. However, we still obtain only marginal gains under full linguistic context and posit that visual embeddings extracted from deep vision models (ResNet for Multi30k, ResNext for How2) do not lend themselves to increasing the discriminativeness between the vocabulary elements at token level prediction in NMT. We demonstrate this qualitatively by analyzing attention distribution and quantitatively through Principal Component Analysis, arriving at the conclusion that it is the quality of the visual embeddings rather than the length of sentences, which need to be improved in existing MMT datasets.
We investigate two specific manifestations of compositionality in Neural Machine Translation (NMT) : (1) Productivity - the ability of the model to extend its predictions beyond the observed length in training data and (2) Systematicity - the ability of the model to systematically recombine known parts and rules. We evaluate a standard Sequence to Sequence model on tests designed to assess these two properties in NMT. We quantitatively demonstrate that inadequate temporal processing, in the form of poor encoder representations is a bottleneck for both Productivity and Systematicity. We propose a simple pre-training mechanism which alleviates model performance on the two properties and leads to a significant improvement in BLEU scores.
The success of bidirectional encoders using masked language models, such as BERT, on numerous natural language processing tasks has prompted researchers to attempt to incorporate these pre-trained models into neural machine translation (NMT) systems. However, proposed methods for incorporating pre-trained models are non-trivial and mainly focus on BERT, which lacks a comparison of the impact that other pre-trained models may have on translation performance. In this paper, we demonstrate that simply using the output (contextualized embeddings) of a tailored and suitable bilingual pre-trained language model (dubbed BiBERT) as the input of the NMT encoder achieves state-of-the-art translation performance. Moreover, we also propose a stochastic layer selection approach and a concept of dual-directional translation model to ensure the sufficient utilization of contextualized embeddings. In the case of without using back translation, our best models achieve BLEU scores of 30.45 for En->De and 38.61 for De->En on the IWSLT14 dataset, and 31.26 for En->De and 34.94 for De->En on the WMT14 dataset, which exceeds all published numbers.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا