ﻻ يوجد ملخص باللغة العربية
When deploying a Chinese neural text-to-speech (TTS) synthesis system, one of the challenges is to synthesize Chinese utterances with English phrases or words embedded. This paper looks into the problem in the encoder-decoder framework when only monolingual data from a target speaker is available. Specifically, we view the problem from two aspects: speaker consistency within an utterance and naturalness. We start the investigation with an Average Voice Model which is built from multi-speaker monolingual data, i.e. Mandarin and English data. On the basis of that, we look into speaker embedding for speaker consistency within an utterance and phoneme embedding for naturalness and intelligibility and study the choice of data for model training. We report the findings and discuss the challenges to build a mixed-lingual TTS system with only monolingual data.
This paper introduces PnG BERT, a new encoder model for neural TTS. This model is augmented from the original BERT model, by taking both phoneme and grapheme representations of text as input, as well as the word-level alignment between them. It can b
Syntactic parsing is a highly linguistic processing task whose parser requires training on treebanks from the expensive human annotation. As it is unlikely to obtain a treebank for every human language, in this work, we propose an effective cross-lin
While neural end-to-end text-to-speech (TTS) is superior to conventional statistical methods in many ways, the exposure bias problem in the autoregressive models remains an issue to be resolved. The exposure bias problem arises from the mismatch betw
We present the Zero Resource Speech Challenge 2019, which proposes to build a speech synthesizer without any text or phonetic labels: hence, TTS without T (text-to-speech without text). We provide raw audio for a target voice in an unknown language (
This paper describes the systems submitted to IWSLT 2021 by the Volctrans team. We participate in the offline speech translation and text-to-text simultaneous translation tracks. For offline speech translation, our best end-to-end model achieves 8.1