ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental quantum phase discrimination enhanced by controllable indistinguishability-based coherence

90   0   0.0 ( 0 )
 نشر من قبل Rosario Lo Franco
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum coherence, a basic feature of quantum mechanics residing in superpositions of quantum states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles, in that for the latter a unique contribution exists linked to indistinguishability which cannot occur for nonidentical particles. We experimentally demonstrate by an optical setup this additional contribution to quantum coherence, showing that its amount directly depends on the degree of indistinguishability and exploiting it to run a quantum phase discrimination protocol. Furthermore, the designed setup allows for simulating Fermionic particles with photons, thus assessing the role of particle statistics (Bosons or Fermions) in coherence generation and utilization. Our experiment proves that independent indistinguishable particles can supply a controllable resource of coherence for quantum metrology.

قيم البحث

اقرأ أيضاً

The protection of qubit coherence is an essential task in order to build a practical quantum computer able to manipulate, store and read quantum information with a high degree of fidelity. Recently, it has been proposed to increase the operation time of a qubit by means of strong pulses to achieve a dynamical decoupling of the qubit from its environment. We propose and demonstrate a simple and highly efficient alternative pulse protocol based on Floquet modes, which increases the decoherence time in a number of materials with different spin Hamiltonians and environments. We demonstrate the regime $T_2approx T_1$, thus providing a route for spin qubits and spin ensembles to be used in quantum information processing and storage.
Artificially reproducing the biological light reactions responsible for the remarkably efficient photon-to-charge conversion in photosynthetic complexes represents a new direction for the future development of photovoltaic devices. Here, we develop s uch a paradigm and present a model photocell based on the nanoscale architecture of photosynthetic reaction centres that explicitly harnesses the quantum mechanical effects recently discovered in photosynthetic complexes. Quantum interference of photon absorption/emission induced by the dipole-dipole interaction between molecular excited states guarantees an enhanced light-to-current conversion and power generation for a wide range of realistic parameters, opening a promising new route for designing artificial light-harvesting devices inspired by biological photosynthesis and quantum technologies.
When standard light sources are employed, the precision of the phase determination is limited by the shot noise. Quantum entanglement provides means to exceed this limit with the celebrated example of N00N states that saturate the ultimate Heisenberg limit on precision, but at the same time are extremely fragile to losses. In contrast, we provide experimental evidence that appropriately engineered quantum states outperform both standard and N00N states in the precision of phase estimation when losses are present.
Roa et al. showed that quantum state discrimination between two nonorthogonal quantum states does not require quantum entanglement but quantum dissonance only. We find that quantum coherence can also be utilized for unambiguous quantum state discrimi nation. We present a protocol and quantify the required coherence for this task. We discuss the optimal unambiguous quantum state discrimination strategy in some cases. In particular, our work illustrates an avenue to find the optimal strategy for discriminating two nonorthogonal quantum states by measuring quantum coherence.
Quantum coherence, the physical property underlying fundamental phenomena such as multi-particle interference and entanglement, has emerged as a valuable resource upon which modern technologies are founded. In general, the most prominent adversary of quantum coherence is noise arising from the interaction of the associated dynamical system with its environment. Under certain conditions, however, the existence of noise may drive quantum and classical systems to endure intriguing nontrivial effects. In this vein, here we demonstrate, both theoretically and experimentally, that when two indistinguishable non-interacting particles co-propagate through quantum networks affected by non-dissipative noise, the system always evolves into a steady state in which coherences accounting for particle indistinguishabilty perpetually prevail. Furthermore, we show that the same steady state with surviving quantum coherences is reached even when the initial state exhibits classical correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا