ﻻ يوجد ملخص باللغة العربية
The protection of qubit coherence is an essential task in order to build a practical quantum computer able to manipulate, store and read quantum information with a high degree of fidelity. Recently, it has been proposed to increase the operation time of a qubit by means of strong pulses to achieve a dynamical decoupling of the qubit from its environment. We propose and demonstrate a simple and highly efficient alternative pulse protocol based on Floquet modes, which increases the decoherence time in a number of materials with different spin Hamiltonians and environments. We demonstrate the regime $T_2approx T_1$, thus providing a route for spin qubits and spin ensembles to be used in quantum information processing and storage.
Quantum coherence is a fundamental resource that quantum technologies exploit to achieve performance beyond that of classical devices. A necessary prerequisite to achieve this advantage is the ability of measurement devices to detect coherence from t
Decoherence largely limits the physical realization of qubits and its mitigation is critical to quantum science. Here, we construct a robust qubit embedded in a decoherence-protected subspace, obtained by hybridizing an applied microwave drive with t
We experimentally investigate the protection of electron spin coherence of nitrogen vacancy (NV) center in diamond by dynamical nuclear polarization. The electron spin decoherence of an NV center is caused by the magnetic ield fluctuation of the $^{1
In this letter, we investigate the effects of non-Hermitian driving on quantum coherence in a bipartite system. The results that the dynamical localization destroyed by the Hermitian interaction revives are an evidence of the restoration of quantum c
Quantum coherence, a basic feature of quantum mechanics residing in superpositions of quantum states, is a resource for quantum information processing. Coherence emerges in a fundamentally different way for nonidentical and identical particles, in th