ﻻ يوجد ملخص باللغة العربية
The popularity of multimodal sensors and the accessibility of the Internet have brought us a massive amount of unlabeled multimodal data. Since existing datasets and well-trained models are primarily unimodal, the modality gap between a unimodal network and unlabeled multimodal data poses an interesting problem: how to transfer a pre-trained unimodal network to perform the same task on unlabeled multimodal data? In this work, we propose multimodal knowledge expansion (MKE), a knowledge distillation-based framework to effectively utilize multimodal data without requiring labels. Opposite to traditional knowledge distillation, where the student is designed to be lightweight and inferior to the teacher, we observe that a multimodal student model consistently denoises pseudo labels and generalizes better than its teacher. Extensive experiments on four tasks and different modalities verify this finding. Furthermore, we connect the mechanism of MKE to semi-supervised learning and offer both empirical and theoretical explanations to understand the denoising capability of a multimodal student.
True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes a
As data from IoT (Internet of Things) sensors become ubiquitous, state-of-the-art machine learning algorithms face many challenges on directly using sensor data. To overcome these challenges, methods must be designed to learn directly from sensors wi
Clinical decision-making in oncology involves multimodal data such as radiology scans, molecular profiling, histopathology slides, and clinical factors. Despite the importance of these modalities individually, no deep learning framework to date has c
The complexity of the visual world creates significant challenges for comprehensive visual understanding. In spite of recent successes in visual recognition, todays vision systems would still struggle to deal with visual queries that require a deeper
Audio-visual event localization aims to localize an event that is both audible and visible in the wild, which is a widespread audio-visual scene analysis task for unconstrained videos. To address this task, we propose a Multimodal Parallel Network (M