ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Sensory Time-cue to enable Unsupervised Multimodal Meta-learning

70   0   0.0 ( 0 )
 نشر من قبل Qiong Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As data from IoT (Internet of Things) sensors become ubiquitous, state-of-the-art machine learning algorithms face many challenges on directly using sensor data. To overcome these challenges, methods must be designed to learn directly from sensors without manual annotations. This paper introduces Sensory Time-cue for Unsupervised Meta-learning (STUM). Different from traditional learning approaches that either heavily depend on labels or on time-independent feature extraction assumptions, such as Gaussian distribution features, the STUM system uses time relation of inputs to guide the feature space formation within and across modalities. The fact that STUM learns from a variety of small tasks may put this method in the camp of Meta-Learning. Different from existing Meta-Learning approaches, STUM learning tasks are composed within and across multiple modalities based on time-cue co-exist with the IoT streaming data. In an audiovisual learning example, because consecutive visual frames usually comprise the same object, this approach provides a unique way to organize features from the same object together. The same method can also organize visual object features with the objects spoken-name features together if the spoken name is presented with the object at about the same time. This cross-modality feature organization may further help the organization of visual features that belong to similar objects but acquired at different location and time. Promising results are achieved through evaluations.



قيم البحث

اقرأ أيضاً

Existing unsupervised video-to-video translation methods fail to produce translated videos which are frame-wise realistic, semantic information preserving and video-level consistent. In this work, we propose UVIT, a novel unsupervised video-to-video translation model. Our model decomposes the style and the content, uses the specialized encoder-decoder structure and propagates the inter-frame information through bidirectional recurrent neural network (RNN) units. The style-content decomposition mechanism enables us to achieve style consistent video translation results as well as provides us with a good interface for modality flexible translation. In addition, by changing the input frames and style codes incorporated in our translation, we propose a video interpolation loss, which captures temporal information within the sequence to train our building blocks in a self-supervised manner. Our model can produce photo-realistic, spatio-temporal consistent translated videos in a multimodal way. Subjective and objective experimental results validate the superiority of our model over existing methods. More details can be found on our project website: https://uvit.netlify.com
Unsupervised domain translation has recently achieved impressive performance with Generative Adversarial Network (GAN) and sufficient (unpaired) training data. However, existing domain translation frameworks form in a disposable way where the learnin g experiences are ignored and the obtained model cannot be adapted to a new coming domain. In this work, we take on unsupervised domain translation problems from a meta-learning perspective. We propose a model called Meta-Translation GAN (MT-GAN) to find good initialization of translation models. In the meta-training procedure, MT-GAN is explicitly trained with a primary translation task and a synthesized dual translation task. A cycle-consistency meta-optimization objective is designed to ensure the generalization ability. We demonstrate effectiveness of our model on ten diverse two-domain translation tasks and multiple face identity translation tasks. We show that our proposed approach significantly outperforms the existing domain translation methods when each domain contains no more than ten training samples.
Domain generalization (DG) aims to help models trained on a set of source domains generalize better on unseen target domains. The performances of current DG methods largely rely on sufficient labeled data, which however are usually costly or unavaila ble. While unlabeled data are far more accessible, we seek to explore how unsupervised learning can help deep models generalizes across domains. Specifically, we study a novel generalization problem called unsupervised domain generalization, which aims to learn generalizable models with unlabeled data. Furthermore, we propose a Domain-Irrelevant Unsupervised Learning (DIUL) method to cope with the significant and misleading heterogeneity within unlabeled data and severe distribution shifts between source and target data. Surprisingly we observe that DIUL can not only counterbalance the scarcity of labeled data but also further strengthen the generalization ability of models when the labeled data are sufficient. As a pretraining approach, DIUL shows superior to ImageNet pretraining protocol even when the available data are unlabeled and of a greatly smaller amount compared to ImageNet. Extensive experiments clearly demonstrate the effectiveness of our method compared with state-of-the-art unsupervised learning counterparts.
The popularity of multimodal sensors and the accessibility of the Internet have brought us a massive amount of unlabeled multimodal data. Since existing datasets and well-trained models are primarily unimodal, the modality gap between a unimodal netw ork and unlabeled multimodal data poses an interesting problem: how to transfer a pre-trained unimodal network to perform the same task on unlabeled multimodal data? In this work, we propose multimodal knowledge expansion (MKE), a knowledge distillation-based framework to effectively utilize multimodal data without requiring labels. Opposite to traditional knowledge distillation, where the student is designed to be lightweight and inferior to the teacher, we observe that a multimodal student model consistently denoises pseudo labels and generalizes better than its teacher. Extensive experiments on four tasks and different modalities verify this finding. Furthermore, we connect the mechanism of MKE to semi-supervised learning and offer both empirical and theoretical explanations to understand the denoising capability of a multimodal student.
True understanding of videos comes from a joint analysis of all its modalities: the video frames, the audio track, and any accompanying text such as closed captions. We present a way to learn a compact multimodal feature representation that encodes a ll these modalities. Our model parameters are learned through a proxy task of inferring the temporal ordering of a set of unordered videos in a timeline. To this end, we create a new multimodal dataset for temporal ordering that consists of approximately 30K scenes (2-6 clips per scene) based on the Large Scale Movie Description Challenge. We analyze and evaluate the individual and joint modalities on three challenging tasks: (i) inferring the temporal ordering of a set of videos; and (ii) action recognition. We demonstrate empirically that multimodal representations are indeed complementary, and can play a key role in improving the performance of many applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا