ترغب بنشر مسار تعليمي؟ اضغط هنا

FRITL: A Hybrid Method for Causal Discovery in the Presence of Latent Confounders

98   0   0.0 ( 0 )
 نشر من قبل Wei Chen
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of estimating a particular type of linear non-Gaussian model. Without resorting to the overcomplete Independent Component Analysis (ICA), we show that under some mild assumptions, the model is uniquely identified by a hybrid method. Our method leverages the advantages of constraint-based methods and independent noise-based methods to handle both confounded and unconfounded situations. The first step of our method uses the FCI procedure, which allows confounders and is able to produce asymptotically correct results. The results, unfortunately, usually determine very few unconfounded direct causal relations, because whenever it is possible to have a confounder, it will indicate it. The second step of our procedure finds the unconfounded causal edges between observed variables among only those adjacent pairs informed by the FCI results. By making use of the so-called Triad condition, the third step is able to find confounders and their causal relations with other variables. Afterward, we apply ICA on a notably smaller set of graphs to identify remaining causal relationships if needed. Extensive experiments on simulated data and real-world data validate the correctness and effectiveness of the proposed method.

قيم البحث

اقرأ أيضاً

Current supervised learning can learn spurious correlation during the data-fitting process, imposing issues regarding interpretability, out-of-distribution (OOD) generalization, and robustness. To avoid spurious correlation, we propose a Latent Causa l Invariance Model (LaCIM) which pursues causal prediction. Specifically, we introduce latent variables that are separated into (a) output-causative factors and (b) others that are spuriously correlated to the output via confounders, to model the underlying causal factors. We further assume the generating mechanisms from latent space to observed data to be causally invariant. We give the identifiable claim of such invariance, particularly the disentanglement of output-causative factors from others, as a theoretical guarantee for precise inference and avoiding spurious correlation. We propose a Variational-Bayesian-based method for estimation and to optimize over the latent space for prediction. The utility of our approach is verified by improved interpretability, prediction power on various OOD scenarios (including healthcare) and robustness on security.
72 - Wei Li , Chunchen Liu , Zhi Geng 2020
Causal mediation analysis is used to evaluate direct and indirect causal effects of a treatment on an outcome of interest through an intermediate variable or a mediator.It is difficult to identify the direct and indirect causal effects because the me diator cannot be randomly assigned in many real applications. In this article, we consider a causal model including latent confounders between the mediator and the outcome. We present sufficient conditions for identifying the direct and indirect effects and propose an approach for estimating them. The performance of the proposed approach is evaluated by simulation studies. Finally, we apply the approach to a data set of the customer loyalty survey by a telecom company.
Latent variables may lead to spurious relationships that can be misinterpreted as causal relationships. In Bayesian Networks (BNs), this challenge is known as learning under causal insufficiency. Structure learning algorithms that assume causal insuf ficiency tend to reconstruct the ancestral graph of a BN, where bi-directed edges represent confounding and directed edges represent direct or ancestral relationships. This paper describes a hybrid structure learning algorithm, called CCHM, which combines the constraint-based part of cFCI with hill-climbing score-based learning. The score-based process incorporates Pearl s do-calculus to measure causal effects and orientate edges that would otherwise remain undirected, under the assumption the BN is a linear Structure Equation Model where data follow a multivariate Gaussian distribution. Experiments based on both randomised and well-known networks show that CCHM improves the state-of-the-art in terms of reconstructing the true ancestral graph.
Causal discovery aims to recover causal structures or models underlying the observed data. Despite its success in certain domains, most existing methods focus on causal relations between observed variables, while in many scenarios the observed ones m ay not be the underlying causal variables (e.g., image pixels), but are generated by latent causal variables or confounders that are causally related. To this end, in this paper, we consider Linear, Non-Gaussian Latent variable Models (LiNGLaMs), in which latent confounders are also causally related, and propose a Generalized Independent Noise (GIN) condition to estimate such latent variable graphs. Specifically, for two observed random vectors $mathbf{Y}$ and $mathbf{Z}$, GIN holds if and only if $omega^{intercal}mathbf{Y}$ and $mathbf{Z}$ are statistically independent, where $omega$ is a parameter vector characterized from the cross-covariance between $mathbf{Y}$ and $mathbf{Z}$. From the graphical view, roughly speaking, GIN implies that causally earlier latent common causes of variables in $mathbf{Y}$ d-separate $mathbf{Y}$ from $mathbf{Z}$. Interestingly, we find that the independent noise condition, i.e., if there is no confounder, causes are independent from the error of regressing the effect on the causes, can be seen as a special case of GIN. Moreover, we show that GIN helps locate latent variables and identify their causal structure, including causal directions. We further develop a recursive learning algorithm to achieve these goals. Experimental results on synthetic and real-world data demonstrate the effectiveness of our method.
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica l structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent confounders: Gaussian graphical models with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these two approaches have similar goals, they are motivated by different assumptions about confounding. In this paper, we explore the connection between these two approaches and propose a new method, which combines the strengths of these two approaches. We prove the consistency and convergence rate for the PCA-based method and use these results to provide guidance about when to use each method. We demonstrate the effectiveness of our methodology using both simulations and in two real-world applications.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا