ترغب بنشر مسار تعليمي؟ اضغط هنا

Kitaev magnetism through the prism of lithium iridate

124   0   0.0 ( 0 )
 نشر من قبل Alexander Tsirlin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fifteen years since its inception, the Kitaev model still boasts only a narrow group of material realizations. We review the progress in studying and understanding one of them, lithium iridate Li$_2$IrO$_3$ available in three polymorphs that host strong Kitaev interactions on spin lattices of different dimensionality and topology. We also discuss feasibility, effectiveness, and repercussions of tuning strategies based on the application of external pressure and chemical substitutions.

قيم البحث

اقرأ أيضاً

Temperature-pressure phase diagram of the Kitaev hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ is explored using magnetization, thermal expansion, magnetostriction, and muon spin rotation ($mu$SR) measurements, as well as single-crystal x-ray diffracti on under pressure and ab initio calculations. The Neel temperature of $beta$-Li$_2$IrO$_3$ increases with the slope of 0.9 K/GPa upon initial compression, but the reduction in the polarization field $H_c$ reflects a growing instability of the incommensurate order. At 1.4 GPa, the ordered state breaks down upon a first-order transition giving way to a new ground state marked by the coexistence of dynamically correlated and frozen spins. This partial freezing in the absence of any conspicuous structural defects may indicate classical nature of the resulting pressure-induced spin liquid, an observation paralleled to the increase in the nearest-neighbor off-diagonal exchange $Gamma$ under pressure.
The realization of Kitaev spin liquid, where spins on a honeycomb lattice are coupled ferromagnetically by bond-dependent anisotropic interactions, has been a sought-after dream. 5d iridium oxides $alpha$-Li2IrO3 and $alpha$-Na2IrO3 with a honeycomb lattice of Jeff = 1/2 moments recently emerged as a possible materialization. Strong signature of Kitaev physics, however, was not captured. Here we report the discovery of a complex iridium oxide $beta$-Li2IrO3 with Jeff = 1/2 moments on hyper-honeycomb lattice, a three-dimensional analogue of honeycomb lattice. A positive Curie-Weiss temperature $theta_{CW}$ ~ 40 K indicated dominant ferromagnetic interactions among Jeff = 1/2 moments in $beta$-Li2IrO3. A magnetic ordering with a small entropy change was observed at Tc = 38 K, which, with the application of magnetic field of only 3 T, changed to a fully polarized state of Jeff = 1/2 moments. Those results imply that hyper-honeycomb beta-Li2IrO3 is located in the vicinity to a Kitaev spin liquid.
The ruthenium halide $alpha$-RuCl$_{3}$ is a promising candidate for a Kitaev spin liquid. However, the microscopic model describing $alpha$-RuCl$_{3}$ is still debated partly because of a lack of analogue materials for $alpha$-RuCl$_{3}$, which prev ents tracking of electronic properties as functions of controlled interaction parameters. Here, we report a successful synthesis of RuBr$_{3}$. The material RuBr$_{3}$~possesses BiI$_3$-type structure (space group: $Roverline{3}$) where Ru$^{3+}$ form an ideal honeycomb lattice. Although RuBr$_{3}$ has a negative Weiss temperature, it undergoes a zigzag antiferromagnetic transition at $T_mathrm{N}=34$ K, as does $alpha$-RuCl$_{3}$. Our analyses indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium trihalides by changing the ligand sites, which provides a new platform for exploring Kitaev spin liquids.
83 - Meng Wang , Lin Hao , Fang Yin 2021
Spin-orbit-coupled Mott iridates show great similarity with parent compounds of superconducting cuprates, attracting extensive research interests especially for their electron-doped states. However, previous experiments are largely limited within a s mall doping range due to the absence of effective dopants, and therefore the electron-doped phase diagram remains elusive. Here we utilize an ionic-liquid-gating induced protonation method to achieve electron-doping into a 5d Mott-insulator built with SrIrO3/SrTiO3 superlattice, and achieve a systematic mapping of its electron-doped phase diagram with the evolution of the iridium valence state from 4+ to 3+, equivalent to doping of one electron per iridium ion. Along increasing doping level, the parent Mott-insulator is first turned into a localized metallic state with gradually suppressed magnetic ordering, and then further evolved into a nonmagnetic band insulating state. This work forms an important step forward for the study of electron-doped Mott iridate systems, and the strategy of manipulating the band filling in an artificially designed superlattice structure can be readily extended into other systems with more exotic states to explore.
We study on transport and magnetic properties of hydrated and lithium-intercalated $alpha$-RuCl$_3$, Li$_x$RuCl$_3 cdot y$H$_2$O, for investigating the effect on mobile-carrier doping into candidate materials for a realization of a Kitaev model. From thermogravitometoric and one-dimensional electron map analyses, we find two crystal structures of this system, that is, mono-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox1.3)$ and bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O~$(xapprox0.56, yapprox3.9)$. The temperature dependence of the electrical resistivity shows a temperature hysteresis at 200-270 K, which is considered to relate with a formation of a charge order. The antiferromagnetic order at 7-13 K in pristine $alpha$-RuCl$_3$~ is successfully suppressed down to 2 K in bi-layer hydrated Li$_x$RuCl$_3 cdot y$H$_2$O, which is sensitive to not only an electronic state of Ru but also an interlayer distance between Ru-Cl planes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا