ﻻ يوجد ملخص باللغة العربية
Spin-orbit-coupled Mott iridates show great similarity with parent compounds of superconducting cuprates, attracting extensive research interests especially for their electron-doped states. However, previous experiments are largely limited within a small doping range due to the absence of effective dopants, and therefore the electron-doped phase diagram remains elusive. Here we utilize an ionic-liquid-gating induced protonation method to achieve electron-doping into a 5d Mott-insulator built with SrIrO3/SrTiO3 superlattice, and achieve a systematic mapping of its electron-doped phase diagram with the evolution of the iridium valence state from 4+ to 3+, equivalent to doping of one electron per iridium ion. Along increasing doping level, the parent Mott-insulator is first turned into a localized metallic state with gradually suppressed magnetic ordering, and then further evolved into a nonmagnetic band insulating state. This work forms an important step forward for the study of electron-doped Mott iridate systems, and the strategy of manipulating the band filling in an artificially designed superlattice structure can be readily extended into other systems with more exotic states to explore.
Fifteen years since its inception, the Kitaev model still boasts only a narrow group of material realizations. We review the progress in studying and understanding one of them, lithium iridate Li$_2$IrO$_3$ available in three polymorphs that host str
Hyperhoneycomb iridate $beta$-Li$_2$IrO$_3$ is a three-dimensional analogue of two-dimensional honeycomb iridates, such as $alpha$-Li$_2$IrO$_3$, which recently appeared as another playground for the physics of Kitaev-type spin liquid. $beta$-Li$_2$I
We investigate the quasiperiodic crystal (LaS)1.196(VS2) by angle and time resolved photoemission spectroscopy. The dispersion of electronic states is in qualitative agreement with band structure calculated for the VS2 slab without the incommensurate
We have investigated the pressure-induced spin-state transition in Co$^{2+}$ systems in terms of a competition between the Hunds exchange energy ($J$) and the crystal-field splitting ($Delta_{CF}$). First, we show the universal metastability of the l
The crystal structure of layered metal IrTe2 is determined using single-crystal x-ray diffraction. At T=220 K, it exhibits Ir and Te dimers forming a valence-bond crystal. Electronic structure calculations reveal an intriguing quasi-two-dimensional e